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SECTION I

INTRODUCTION

Vertical takeoff andlanding (VTOL) systems have been recommended

by many experts in the aeronautical and transportation fields, including members of

the President's Scientific Advisory Committee, as the logical form of transportation for

the high-density, short-haul transportation markets in the 1980s. Such systems span

a broad range of operations, from the intra-urban, typified by New York Airways, to

the inter-city shuttles operating between downtown or nearby vertiports as well as to

conventional airports.

In addition to the extreme convenience afforded by VTOL, the unique vertical

flight capability requires a much smaller landing area than either conventional takeoff

and landing (CTOL) or short takeoff and landing (STOL) aircraft. Also, significant

buffer zones are required at each end of a CTOL or STOL runway for safety and noise

considerations. Thus, even though VTOL aircraft have higher direct operating costs

than conventional fixed-wing aircraft, the VTOL system is more attractive for many

short-haul markets when all other factors (indirect costs, noise, convenience, etc.)

are considered..

Before a viable VTOL system can become a reality, technology developments

are needed in several areas. For example, the technology for an economical, 150-

passenger class VTOL with reasonably high cruise speed and acceptable passenger ride

qualities for the inter-city market must be developed. At the other end of the spectrum,

advanced helicopter development is needed to improve ride comfort and reduce main-

tenance requirements for the very short-haul, medium-density market. These vehicle

design areas are receiving considerable attention in various programs sponsored by NASA,

the U.S. Army, and the aircraft industry. However, to effectively utilize these ve-

hicles, and to exploit their unique characteristics for minimizing noise and both air and

ground space requirements, corresponding advances must be made in handling qualities,

operating procedures and techniques, and avionics.

The NASA Langley Research Center (LaRC) has undertaken a research program

to develop the navigation, guidance, control, and flight management technology base

-1-
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needed by Government and industry in establishing systems design concepts and operat-
ing procedures for VTOL short-haul transportation systems in the 1980 s time period.
The VALT (VTOL Automatic Landing Technology) Program encompasses the investigation
of operating systems and piloting techniques associated with VTOL operations under all-
weather conditions from downtown vertiports; the definition of terminal air traffic and
airspace requirements; and the development of avionics including navigation, guidance,
controls, and displays for automated takeoff, cruise, and landing operations. The pro-
gram includes requirements analyses, design studies, systems development, ground simu-
lation, and flight validation efforts. System designs will be made and evaluated for
selected vehicles during the program.

Previous LaRC research studies have concluded that meeting the VTOL challenge
will require extensive automation to permit all-weather operation along flight paths that
minimize noise, airspace, and fuel. Flight studies will be conducted to define automation
requirements, develop satisfactory pilot/vehicle interfaces, and identify operating and
control techniques associated with specific, promising vehicle types. Also, to maximize
the potential of VTOL aircraft for relieving air and ground congestion, an efficient and
safe interface between VTOL aircraft and other traffic must be developed.

Previous studies of the requirements for advanced VTOL avionics technology
have also indicated several specific areas in which developments are required. Reliable,
low-cost inertial navigation and guidance systems are needed both for primary navigation
and to provide short-term stability for radio navigation systems. Improved terminal area
navigation systems must be capable of operating at low altitude in congested urban areas,
ensuring obstacle avoidance, and providing information for the final approach and land-
ing guidance system. The landing guidance system must provide sufficient coverage to
take advantage of the VTOL ability to approach from any direction, independent of wind,
and make a vertical landing.

A major element in the VALT Program is the Automated Avionics Development
task. The overall objective is to develop avionics technology for reliable, cost-effective,
automated operation of civil VTOL aircraft. The specific objectives are:

* Definition of the nnvigation ndrl nui;rnnra r .irm -nc0 .r

commercial VTOL operations.

-2-
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* Dqvelopment of control algorithms and technology for automated
and manual control functions.

* Development of low-cost, easily maintainable, inertial and radio
irnertial navigation systems.

* Development of RF navigation and guidance technology for terminal
area, approach, and landing operations.

* Development of display technology for automated flight-control
monitoring and manual take-over requirements.

* Development of sensors for low-speed velocity and precision low-
altitude altimetry requirements.

* Definition, development, and flight test of an advanced, integrated
avionics system for .VTOL automated operations.

Aerospace Systems, Inc. is conducting a research effort for LaRC in support of the

Automated Avionics Development task. The objective of this work is to define the navi-

gation and guidance requirements for commercial VTOL operations in the takeoff, cruise,

terminal area, and landing phases of flight in weather conditions up to and including

Category Ill. This interim report documents the results of the ten-month, Phase I contract

work. In accordance with the contract requirements, the study was limited to two types

of rotorcraft vehicles - pure helicopter and compound helicopter - and three types of

services - intra-urban, inter-city, and conventional airports. Applicable navigation

technology and systems (such as Omega, Loran, inertial, and microwave landing systems)

were examined to define present system shortcomings, to identify areas where technology

advances are required, and to select candidate systems and conceptual approaches. A
multi-configuration "straw-man" system design was prepared, and representative opera-

tional procedures and trajectories defined. A limited flight evaluation program was con-
ducted to investigate VTOL operational procedures and current navigation systems and

to verify analytical results. A comprehensive digital computer simulation (Program VALT)
was developed to provide a means for evaluation of VTOL guidance and navigation system
performance. Program VALT was developed and checked out on a Boston area computer
and demonstrated on the NASA LaRC CDC 6400/6600 computer facility.

In Phase II of the contract, Program VALT and the LaRC computer will be used
to conduct parametric studies and error analyses of navigation sensors, and evaluations
of estimator algorithms. This work will be documented in a subsequent report to be pre-
pared upon the completion of the six-month Phase il effort.

- 3 -
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The material presented in this report is organized in accordance with the major

task areas completed during Phase I. Section 2 describes commercial VTOL operations,

rotorcraft, procedures and navigation requirements. The capabilities and limitations of

available and near-future navigation systems are presented in Section 3. Section 4

describes the straw-man hybrid navigation system, error models and performance evalua-

tion. The flight evaluation program is discussed in Section 5. Conclusions and recom-

mendations are summarized in Section 6. A comprehensive bibliography of VTOL navi-

gation, guidance and operations follows the list of references. Several appendices

provide details of the point-mass VTOL dynamic model; the synthesis of a simple velocity-

command guidance system; descriptions of the simulation program VALT, and a line-of-

sight coverage prediction program COVER.

-4-
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SECTION 2

COMMERCIAL VTOL OPERATIONS

This section discusses the important operational considerations which affect
the feasibility of a commercial VTOL air transportation system.

2.1 RESEARCH GUIDELINES

The purpose of this study has been the development and analysis of the navi-
gation and guidance requirements for VTOL aircraft in scheduled commercial operations.
Navigation and guidance requirements are defined in the takeoff, cruise, terminal area
and landing phase of flight, for fully automated and piloted operations, in both good
and adverse weather up to and including Category III. A variety of candidate naviga-
tion and guidance systems were considered, including radio, Doppler, scanning-beam,
inertial and mixes of these using modern filtering theory.

2.1.1 COMMERCIAL VTOL SERVICES

In the total transportation system, the stage length of 10 - 300 miles, which
defines the short-haul operations sector, is of exceptional importance. It is in this
sector that the conflict is most intense between society's need for "instant transportation"

and society's rejection of the resultant damage to the environment by noise, pollution,
land sterilization and unsightliness. The major high density market routes lie in this
range creating an intense competition between road, rail and air transportation modes,
and between operators within a common-mode. Potential inter-city, short-haul market
regions in the United States are shown in Figure 1.

Three types of short-haul operations can be defined for VTOL service: intra-
urban, inter-city, and conventional airport. Guidelines for VTOL services are
summarized in Table 1.

The intra-urban operations might utilize helicopters with a 20 to 50 passenger
capability, over stage lengths up to.75 miles. Terminals would include city center,
outlying, and airport locations. City center and outlying heliports may be elevated
or at ground level such as in a parking lot or park. Approach paths to such heliports

-5-
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Table 1. Guidelines for Commercial VTOL Services.

City-Center to
Type of Service Intra-Urban Inter-City Conventional

Airport

Rotorcraft Helicopter Compound Compound'
Helicopter Helicopter

Cruise Speed 180 kt - 250 kt 250 kt
Passenger Size 20 to 50 . 50 to 100 50 to 100

Stage Length 75 miles iles l300mies 300 miles

Terminals City Center: City Center: City Center:
Elevated or . Elevated or Elevated or
Ground Level Ground Level Ground Level

Outlying: Airport:
Elevated or Ground Level
Ground Level

Airport:
Ground Level

Pad Size 200 ft 300 to 400 ft 300 to 400 ft

Multi-Pad
Operations Yes Yes Yes in City

Approach/ Any Azimuth Any Azimuth Any Azimuth
Departure
Paths Restricted for Restricted for Restricted for

Noise & Safety Noise & Safety Noise & Safety

Curved in Two Curved in Two Curved in Two
Planes Planes . . Planes

Up to 1000 ft' Up to 1000 ft Up to 1000 ft
VerticaliLeg .,Vertical Leg Vertical Leg

Frequency of 1 per min 1 per min 1 per min
Operations

Mode of Independent of - Independent of Independent of
Operations CTOL/STOL ATC CTOL/STOL ATC CTOL/STOL ATC
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may be restricted due to noise considerations and safety factors such as the avoidance

of tall obstacles. Ideally, to avoid any flight safety problems, intra-urban feeder
service to conventional airports should operate independent of the CTOL/STOL opera-
tions and air traffic control.

Pad size for heliport operations would be on the order of 200 feet square, with
multi-pad operations capability at the high traffic-density locations. Frequency of
operations would be commensurate with the traffic density and number of pads, with a
one-operation-per-minute goal for high density multiple pad locations.

Advanced compound helicopters are contenders for the inter-city and city
center to conventional airport services. Considerations of approach and ATC restric-
tions are the same as for the conventional helicopter service, with pad sizes of 300 to
400 feet square.

For all services, operations should be keyed to a fully automatic systems
approach for all-weather navigation, guidance and control, with the pilot as a monitor-
manager. The automatic systems should be capable of flying the curved approaches
necessary for noise reduction and obstacle avoidance, and of handling vehicle approaches
from any azimuth. Since VTOL vehicles normally come to zero velocity at the landing
site, the general form of an approach-to-landing will be a decelerating flight path,
curved in two planes. However, the use of a vertical leg of up to 1000 feet should be
considered to reduce noise effects in the landing and takeoff phases.

2.1.2 VTOL AIRCRAFT CHARACTERISTICS

Performance characteristics for the pure helicopter and the advanced compound
helicopter are listed in Table 2. The pure helicopter is a rotary wing aircraft which
derives all lift and propulsive force from a rotor or rotors oriented in a substantially
horizontal plane. This configuration is optimum for hovering and moderate forward
speeds, but it has well-known performance limitations with regard to maximum speed
and also with regard to altitude and maneuvering capability near maximum speed.

One reason for the performance limits of the pure helicopter is illustrated by
Figure 2, which shows a typical curve of rotor lift capability as a function of airspeed.
Because of the aerodynamics on the rotor in forward flight, maximum lift decreases
steadily with increasing speed. The maximum speed for a pure helicopter is limited to
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Table 2. Guidelines for Rotorcraft Characteristics.

Parcmeter Helicopter Compound
Helicopter

Passenger Size 20 to 50 50 to 100

Cruise Speed 180 kts 250 kts

Stage Length 75 miles 300 miles

ROTOR PLUS WING

L-

GROSS WEIGHT

ROTOR ONLY

O AIRSPEED

Figure 2. Effect of Wing on Lift Capability.

that value for which rotor lift is-equal to the gross weight. At this speed limit no lift

margin is available for maneuvering except by entering a retreating blade stall condition

that results in high structural loads and vibrations. Increasing total rotor blade area will

increase this speed limit, but it is not generally practical to extend the limit beyond

about 200 knots.
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The addition of a wing is a very efficient way of eliminating the lift-limited

speed of the pure helicopter. Total lift capability now increases with airspeed, providing

excellent maneuver and altitude capability at high speed. The rotor is not required to

lift the gross weight except at low speeds, so that blade area may be reduced compared
to that required for a pure helicopter, thus reducing rotor system weight.

Another limitation to speed of the pure helicopter is imposed by rotor propul-

sive force capability, as illustrated in Figure 3. This force capability is very high at

low speeds, and is achieved by tip path plane tilt. Maximum available propulsive

force drops rapidly with speed, becoming negative (drag) at speeds of about 250 knots
or above. The propulsive force required to pull the airframe through the air, on the
other hand, increases with the square of the forward speed. The point where the two

curves cross depends on the specific design, but is almost always less than 200 knots.
Some form of auxiliary propulsion system (propeller, fan, or jet) is mandatory for higher
speeds.

AVAILABLE

0

W REQUIRED

Cn

0

AIRSPEED

Figure 3. Rotor Propulsive Force.
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The compound helicopter, by virtue of its wing and auxiliary propulsion, has

many advantages over the pure helicopter. In addition to higher speeds, better altitude

performance, and greater maneuverability, the wing-rotor combination has higher lift-

drag ratios than a rotor alone, providing improved cruise efficiency. These factors

combine to provide aircraft of higher productivity (payload times block speed), resulting

in lower operating costs per ton mile or per passenger mile.

A survey of rotorcraft manufacturers was conducted to identify specific existing

or projected designs with the guideline characteristics given in Table 2. It was concluded

that two advanced Sikorsky designs were most suitable for the study. Figure 4 presents

a three-view drawing of the Sikorsky Model S-65-40 commercial helicopter designed to

carry 46 passengers (Ref. 1). Cruise speed for this configuration is 150 kts and maximum

range is over 300 nm. A summary of the model S-65-40 characteristics is presented in

Table 3. Two military forerunners of the S-65-40 have demonstrated the IFR capability

of the aircraft. The CH-53 is fully equipped with radio and navigation equipment to

conduct missions under instrument flight rules. The HH-53B/C ("Super Jolly Green

Giant") is the Air Force primary rescue helicopter; this version of the S-65-40 has a

self-contained Doppler navigation system that provides point-to-point, area navigation

capability and an automatic approach and hover coupler which provides terminal guidance

for the aircraft under non-visual conditions.

The Sikorsky Model S-65-200 compound helicopter design is shown in Figure 5

(Refs. 2 and 3). Its characteristics are given in Table 4. This vehicle has a

maximum cruise speed of 261 kts, a maximum range of 580 nm and carries 100 passengers.

The seven-bladed main rotor provides 100 percent of the lift in hover. In high speed

flight, lift is provided primarily by the wing; for example, at 250 knots the wing carries

80 percent of the aircraft weight. The wing is equipped with simple flaps for adjustment

of lift trim and increased maximum lift coefficient for low speed flight, and, by means of

900 deflection, for reduction of vertical drag in hover. The outboard flaps also function

as ailerons to supplement roll control in high speed flight.

Power for the S-65-200 is supplied by three interchangeable shaft turbine engines,
one on each wing and a third behind the main transmission in the fuselage. The propellers

and rotors are all interconnected so that in the event of malfunction of any of the engines,
the remaining power is available to all dynamic components. Twin fan-type turboprop
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Table 3. Summary of Sikorsky Model S-65-40 Helicopter
Characteristics.

WEIGHTS

Design Gross Weight (Ib) 41,000
Manufacturer's Weight Empty (Ib) 26,618
Operational Weight Empty (Ib) 27,377

PERFORMANCE

Max. Recommended Cruise Speed (kt) 150
Max. Initial Rate of Climb (ft/min) 2,160
Max. Range with Reserve @ Design Gross Weight (nm) 308
Operational Ceiling (ft) 10,000

DIMENSIONS OR CAPACITIES

Overall Length (ft) 88.2
Overall Height (ft) 24.9
Overall Fuselage Width (ft) 17.7
Main Rotor Diameter (ft) 72.2
Tail Rotor Diameter (ft) 16.0
Passenger Capacity @ 32 in Seat Pitch 46
Baggage Capacity (cu ft) 138
Max. Useable Fuel Capacity (Ib) 7,100

FEATURES

Primary Power Plant (2) GE CT64-630-6
Auxiliary Power Plant (1) Solar T62T-38A
Instrument Flight Capability 100 ft Ceiling; 1200 ft RVR
External Noise @ 500 ft 98 PNdB
Internal Noise 75 dB PSIL
Air Conditioning (3) Ham Std R70-3W

Note: Fuel reserve includes allowance for 25 nautical miles at speed for best
range, 45 minutes holding at speed for best endurance and 16.0 kts headwind.

- 13 -

AEROSPACE SYSTEMS, INC. * ONE VINE BROOK PARK * BURLINGTON. MASSACHUSETTS 01803 * (817) 272-7517



m

0

-1
U

0

m

0

II
rC

0

0

ra

-4

Cd

Fiur 5.pWS Siork 5-5-0 omoun Helic oer. '8o
'4O

a,
N'
an
an
'4



Table 4. Summary of Sikorsky Model S-65-200 Compound
Helicopter Characteristics.

WEIGHTS

Design Gross Weight (Ib) 80,400
Manufacturer's Weight Empty (Ib) 53,078
Operational Weight Empty (Ib) 54, 150

PERFORMANCE

Max. Recommended Cruise Speed (kt) 261
Max, Range with Reserve @ Design Gross Weight (nm) 580
Design Range (nm) 200
Cruise Altitude (ft) 15,000 std
VTO Condition @ Design Gross Weight SL 900

DIMENSIONS OR CAPACITIES

Overall Length (ft) 101.7
Overall Height (ft) 33.0
Overall Fuselage Width (ft) 12.3
Main Rotor Diameter (ft) 80.0
Tail Rotor Diameter (ft) 23.0
Passenger Capacity @ 34 in Seat Pitch 100
Baggage Capacity (cu ft) 500
Max. Usable Fuel Capacity (Ib) 14,000
Wing Loading (psf) 110

FEATURES

Primary Power Plant (4) 6800 hp Engines
Auxiliary Power Plant Provided
Prop/Fans (2) 8.5 ft Diameter
Instrument Flight Capability 0 Ceiling 0 RVR
External Noise @ 500 ft 95 PNdB
Internal Noise 68 dB PSIL
Air Conditioning Provided
Pressurization Provided

Note: Fuel Reserve Includes Allowance for 30 nautical miles at speed for best.
range (559 Ib), and 30 minutes holding at speed for best endurance (2400 Ib).
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engines provide propulsive thrust at high speed. The engines can be decoupled from the

drive train during hovering and low speed flight for reduced total power required and for

reduced noise.

The V-tail incorporated in the S-65-200 design provides the required stability

and control characteristics with minimum dependence on stability augmentation. Rudder-

vator control surfaces provide both elevator control, linked to the longitudinal cyclic

pitch control column, and rudder control, linked to the rudder pedals. These control

surfaces, in conjunction with the ailerons, provide airplane type control about all

three axes throughout the speed range.

2.2 OPERATIONAL CONSTRAINTS

From the standpoint of the navigation system, the critical portions of the flight

profile are the takeoff and landing phases. During these phases, the trajectory of the

rotorcraft is determined as a compromise among the requirements to minimize: 1) the

intensity and duration of the noise heard by the community located beneath the flight

path, 2) the fuel expended due to the high power required in low speed flight, and

3) the time spent in the vicinity of the terminal area. The problem is further compli-

cated by the maneuvering required to avoid obstacles and CTOL traffic, the flow char-

acteristics of the rotor during steep descents, and the fundamental control characteristics

of rotorcraft in low speed flight. The following discussion outlines the operational

characteristics of the rotorcraft with respect to the above considerations.

2.2.1 NOISE

Careful choice of the flight path of a rotorcraft near the terminal area leads to

significant reductions in the intensity of ground measured noise levels (Ref. 4). How-
ever, vehicle performance charactetistics, area navigation capabilities, and safety

considerations constrain the choice of practical flight paths. Steeper approaches requir-

ing lower power settings and larger distances between the rotorcraft and the ground reduce
the noise impact area. However, the higher sink rates and lower power settings leave
less margin for error, requiring greater pilot proficiency for manual operations and higher

flurmrmnce dn flnre andrn cerlesm fr rutmati opemat eo; ns
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A simple model for demonstrating the effect of descent angle on the noise

footprint may be developed by assuming that the space contaminated by the aircraft

noise to some specified sound level lies inside a sphere centered at the noise source.

As the aircraft proceeds along its flight path, the sphere generates a cylinder in space.

The intersection of the cylinder with the ground plane.defines a footprint contour inside

of which the noise contamination is equal to or greater than the specified level. Some

representative contours are shown in Figure 6. Increasing the slope angle from 60 to 180

reduces.the contaminated area by a factor of 3. Further increase from 180 to 300 gives

a reduction in contaminated area of only 50 percent. However, increasing the descent

angle from 300 to 900 does not provide any significant additional improvement.

900

90 30

Figure 6. Noise Contours as a Function of Aircraft Descent Angle.

To illustrate the potential benefits of flight path control, a representative

current rotorcraft was flown in a series of approach and climbout paths. Figure 7 illus-

trates the maximum perceived noise level contours for both a typical takeoff trajectory,

and one utilizing a vertical ascent to 750 feet followed by a conventional climbout

(Ref. 4). The conventional takeoff has greatly increased perceived noise contour

areas in the direction of the flight path. However, although the ground noise footprint

is reduced by the 750-foot vertical departure, the intensity of the noise near the takeoff

point is virtually unchanged and the duration of the perceived noise, the fuel burned,

and the climbout time are significantly increased.

It should be noted that landing of a rotorcraft can often be noisier than takeoff.

Although the power settings are lower, blade/vortex interaction in certain descent con-

ditions leads to the high-intensity noise known as "blade slap." Figure 7 also illustrates

the maximum perceived noise level contours for both a conventional descent trajectory,
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Figure 7. Noise Exposure Due to Different Takeoff and Landing Flight Profiles.

and a conventional approach to a point 500 feet above the landing area followed by a

vertical descent to the ground. Again, the vertical descent substantially reduces the

perceived noise contour areas in the direction of the flight path.

The 8 ower and light path ngle for the conventional descent case shown in
Figure 8 illustrate other aspects of the terminal landing problem. Almost zero power was

2400

W ~REAR ROTOR

S81600-

AER AE YTES .FRONT ROTOR
C 800 (L -10

r X j-20

0 -30 _j
0 10 20 30 40 50 60 0 10 20 30 40 50 60

TIME TO TOUCHDOWN, SEC TIME TO TOUCHDOWN, SEC

Figure 8. Power and Flight-Path Angle Time Histories in a 100 Descent to Hover.
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used for nearly 20 seconds, but even then the noise levels remained high due to blade/

vortex interaction. Also, the large deviations of the flight path angle from the desired

value of 100, indicate the necessity for improved guidance and control methods to

implement even the relatively simple terminal trajectory considered.

2.2.2 AERODYNAMICS

In addition to noise considerations, certain fundamental aerodynamic effects

limit the descent angle achievable by a rotorcraft. As shown in Reference 5, one of

the most important parameters is the maximum obtainable drag/lift ratio as a function

of airspeed. This parameter determines the descent and deceleration capability of the

rotorcraft. The relationship between descent angle y, deceleration /, and the drag/
lift ratio D/L is given by

D V
tan - (1)

L g cos y

Note that increased deceleration at a given descent angle and speed requires an in-

crease in drag at constant lift. Because the value of D/L that can be achieved at a

given speed is limited, either the descent angle or the deceleration is also constrained.

However, since the terminal landing phase must include both descent and deceleration,

the manner in which these are combined greatly influences the time and fuel consumed

during descent for a given value of (D/L) max

For rotorcraft, (D/L)max is limited by the flow conditions at the rotor(s). As

shown in Figure 9, the possible combinations of descent angle and rates of descent are

restricted by flight conditions known as the vortex-ring state and the autorotative state.
The vortex-ring state is a condition of violently unsteady flow occurring on rotors

operating with high D/L at low flight speeds. It limits the maximum achievable D/L.
The autorotative state occurs when rotor flow conditions are such that the power required

by the rotor is reduced to zero; steeper descent angles cannot be achieved without

increasing the rate of descent. Autorotation is not normally.used in IFR conditions

since the rates of descent are excessive for the high disc loadings of current rotorcraft.

The principal operational limitation on (D/L)ma x is therefore the vortex-ring state.
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Vh = rotor induced velocity in hovering
Figure 9. Helicopter Approximate Descent Boundaries in Nondimensional Form.

2.2.3 STABILITY AND CONTROL

As was seen in Figure 8, the flight path descent angle can vary substantially

from the desired value during steep descents, despite the best efforts of the pilot.
These variations are due to difficulties arising from the fundamental control character-
istics of rotorcraft, as shown by the following simple analysis.

Consider the problem of controlling the rotorcraft shown in Figure 10 during
a steep descent at constant velocity. Neglecting aerodynamic effects, the linearized
equations of motion with respect to inertial axes whose origin is translating at constant
velocity along the nominal flight path are:
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where x, z = longitudinal and vertical translation perturbations

cc = pitch angle perturbation

6e = angular displacement of thrust vector due to cyclic control

8 = collective control displacement

T6  = thrust change per unit thrust control displacement

h = distance from rotor center to rotorcraft cg

m = aircraft mass

lyy = pitching inertia of aircraft about cg

During low speed descent, longitudinal velocity of the rotorcraft is controlled by tilt-
ing the rotorcraft as a whole, and therefore its thrust vector. Equations (2) - (4) show
that the response of the aircraft to cyclic or collective control displacements is a
change of pitch attitude or vertical displacement increasing as the second power of
time, and a change of horizontal displacement increasing as the fourth power of time.
A pilot attempting to control a rotorcraft on a steep descent path requires a great deal
of anticipation and control coordination; the task approaches the impossible under
adverse conditions. While the use of attitude stabilization in current rotorcraft simpli-
fies the pilot's control task by reducing the horizontal displacement response to an
increase with the second power of time, a high degree of anticipation and control
coordination by the pilot is still required; the presence of gusting winds, building-
induced turbulence, and low visibility further complicate this task.

2.2.4 ECONOMY

A key factor in the feasibility of a commercial VTOL system is economy of
operation. To be economically successful, service must be performed with a high
degree of reliability regardless of weather or conventional traffic. Since a significant
percentage of the VTOL service will involve traffic connecting with trunk and regional
airlines, the system must have the capability of operating into and out of CTOL airports.
kA 0 e .. ._ . L IMevI r l mVust be uule 1to Schedule Irequenciu So as to meet connections with a high

degree of reliability.
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If the VTOL operation is subject to undue air traffic delays, not only will

connections be missed, but Direct Operating Costs (DOC) will increase rapidly, as shown

in Figure 11 (Ref. 6). For example, on a 2 0 0 -mile flight, a 15-minute delay, may result

in nearly a 40 percent increase in DOC. Thus, even though the VTOL service carries

strictly local traffic, the cost effect of landing/takeoff delays may cause economic

disaster. The relative effect of delays on the short-haul DOC is much more severe than

on the long-haul DOC.

80-

O 30 MIN DELAY
0 60-

zo

,,, 40
a:04. 15 MIN DELAY

U _

ca 20

0 100 200 300 400 500

STAGE LENGTH (NM)

Figure 11. Effects of Delay on VTOL Direct
Operating Cost.

Two obvious implications of the economic situation are: 1) the VTOL system

must be capable of operating in adverse weather conditions to the same degree as con-

ventional traffic; and 2) the VTOL aircraft must also be permitted to operate essentially
independently of the CTOL traffic to avoid delays. Both requirements have a significant
impact on the VTOL navigation and guidance requirements.

2.2.5 SAFETY

Unquestionably, safety is a necessity for the commercial VTOL system. Routes
must be established which avoid obstructions, conventional traffic, noise sensitive areas,
etc., and these must be followed with close tolerances in all weather. Consequently,
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the navigation system must provide extreme accuracy and operate reliably even at low

altitudes in the urban environment. Moreover, to achieve independence from the con-

ventional air traffic control (ATC) system, the VTOL should be able to provide its own

separation from other air traffic, both CTOLs and other VTOLs.

2.3 IFR OPERATIONS

2.3.1 BACKGROUND

In recognition of the traveling public's insistence on schedule reliability,

there is widespread agreement that IFR authorization is necessary to obtain a fuller

measure of the inherent operational capabilities of modern helicopters (Refs. 7 - 10).

In the past, most IFR operations have been conducted by military helicopters including

single-engine types without civil IFR certification, by remote area operators, and by

airline helicopters with limited IFR authorization. The helicopter was'initially certi-

ficated only for VFR operations because, compared to a fixed-wing aircraft, it did not

possess inherent stick-free or stick-force stability. Helicopters were utilized mostly

in remote areas and for limited speed and range activities in which there was no "must

go" dependence in that waiting out the weather was acceptable.

In earlier IFR certification attempts, electronic stabilization was not con-

sidered an alternative solution. The piston-powered Cessna helicopter obtained IFR

certification by adding a system of bellows, springs and mechanical systems to incor-

porate the required stick forces. Newer twin-turbine helicopter transports with impro-

vised stabilization systems achieved limited IFR certification by the FAA. For example,
Los Angeles Airways had an IFR departure authorization to an on-top clearance above

the fog. More recently, the FAA has issued IFR standards which give the option of

electronic stabilization in lieu of stick force, thus permitting IFR certification for auto-

pilot-equipped helicopters.

Some commercial operators have been operating helicopters under IFR condi-

tions but with handicaps. Okanagan Helicopters Ltd. is an example of remote area

operators. For approximately four years, Okanagan has been operating Sikorsky S-61

helicopters, under iFR conditions, to oil rigs up to 300 miies offshore. As an example,
of the 144 hours flown in December 1971, all but five hours and thirty minutes were

flown IFR. Okanagan uses Decca and radar, and have also done some work with the
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Global VLF Navigation System. The single autopilot system on the S-61 has been

satisfactory. Okanagan's biggest problem in their IFR operations has been the alternate

routing, where fixed-wing weather minimums are enforced.

Another offshore operator, Petroleum Helicopters, also uses the VLF navigation

system satisfactorily in the Gulf of Mexico.

KLM North Sea Operations has obtained an IFR route certification for its heli-

copters with certain avionics and airways aids supplemented by onboard radar to locate

and make approaches to petroleum platforms in the North Sea off Holland. Approxi-

mately 20 percent of all their flight time is IFR. Weather minimums are 150 feet with

1/2-mile visibility. Helicopter instrumentation includes VOR, ILS, ADF, Decca and

airborne radar.

U.S. military forces have been performing IFR operations with rotorcraft as

standard procedure. Most of the instrument operations are in the UH-1 Huey with no

unusual instrumentation or radio groupings. The Army uses the lowest fixed-wing mini-

mums and reduces the visibility minimum by one half. The Army also considers alternates

as a major problem due in part to the limited range of helicopters. Automatic stabiliza-

tion for IFR is not required.

2.3.2 NEW YORK AIRWAYS

New York Airways (NYA) provides a scheduled shuttle service between the

three major New York metropolitan area airports (Newark, LaGuardia, Kennedy);

downtown Manhattan (Wall Street); Morristown, N .J.; and, recently instituted,

Teterboro, N. J. All present NYA operations are conducted with Sikorsky S-61

helicopters under VFR or special VFR flight rules, and all navigation is performed

visually. Minimum weather requirements are shown in Table 5. Under existing opera-

tions, service to Morristown is occasionally halted by low ceilings due to a ridge west

of Newark, even though weather on either side of the ridge is acceptable. With these

SVFR minimums, NYA has been able to achieve a completion goal of about 92 percent

(Ref. 11). However, IFR capability would enable them to raise this to about 98 per-

cent in the relatively near future, and eventually to perhaps 99.6 percent. Considering
that, in a peak summer month, New York Airways carries over 40,000 passengers, a 6
to 7.6 percent increase in meeting scheduled flight performance is a significant economic
factor.
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Table 5. NYA SVFR Weather Minimums.

Visibility Ceiling
(mi) (ft)

Enroute

JFK-LGA 1 300
East River 1 400
Brooklyn 1 500

Terminal

(Sliding Scale) 3 300
2 400
1 500

New York Airway's experience with the Decca navigation system provides a

realistic example of IFR operation, by a commercial helicopter service. NYA began

working on the development of an IFR capability more than two decades ago (Refs. 12,
13). Early investigations revealed that the Decca VLF hyperbolic navigator system, then

in extensive use for marine navigation, was capable of establishing aircraft location

without the use of line-of-sight VOR/DME signals. A Decca Chain was installed in the

New York area in 1957 under a contract between New York Airways, the Decca Navi-

gator Company and the Airways Modernization Board. The installation was utilized in

the Boeing Vertol V-107 helicopters under visual flight conditions to monitor enroute

flight tracks and the airborne system was appropriately called Flight Track Monitor Sys-

tem (FTMS). NYA commenced an intensive testing program of the equipment, logging

over 40,000 flight hours. NYA received authority from the FAA to utilize the Decca
FTMS to conduct full instrument operations both enroute and at the terminal area.
With the complete implementation of this approval, NYA estimated that flight schedule

cancellations for weather reasons would be reduced by about five times.

Complete segregation of helicopter instrument traffic from the CTOL traffic
was the project goal in the early stages of the program. After a lengthy and careful
study, however, it was conceded that a completely independent operation was not
feasible in the New York area because of the need to co-mingle aircraft in the airspace
surrounding each major airport facility. The adopted air traffic control plan provided
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for the maximum independence of VTOL instrument traffic through the use of procedural
segregation (Refs. 14, 15). The helicopter routes, holding patterns, and altitudes
are depicted visually in Figure 12. The routes provided one-mile separation on parallel
courses to active ILS runways and allowed adjustments in routing to correspond with the
particular runway in use. The only altitude assigned was 1100 feet, with the exception
of a 2000-foot altitude along the Hudson River between Newark and LaGuardia. The
basic airways were 1 nm wide, with a 1 nm buffer zone on each side. No accommoda-
tion was made by the existing CTOL traffic in establishing the VTOL route structure.
IFR flights were not conducted to Manhattan, since a satisfactory missed approach pro-
cedure could not be specified. If holding was necessary, it was accomplished within
the airway itself; however, there was seldom a need to hold since the helicopter could
adjust its speed readily between 55 kt and 120 kt. The additional time required for the
IFR routes did not exceed 10 to 15 minutes; however, such delays were substantial since
under VFR most flights take only 8 - 12 minutes. Area navigation approaches using the
FTMS were developed for Newark, LaGuardia and Kennedy Airports. Figure 13 shows
typical approaches to LGA and Kennedy. Note the minimum descent altitudes of 400
feet, since these are "nonprecision" approaches (no vertical navigation information).

Although NYA was very satisfied with the accuracy and utility of the FTMS,
scheduled IFR operations were conducted for less than six months, primarily because of
the difficulty and cost of maintaining pilot IFR proficiency. Other contributing factors
were the V-107's limited single-engine capability and the relatively high approach
minimum descent altitude of 400 ft, which could not be reduced without vertical guidance.

As a result of the Decca experience, NYA feels there are two major barriers to
commercial VTOL IFR operation in the New York City area:

* Crew training and proficiency.
* Existing CTOL traffic operations.

Crew proficiency is economically impossible to maintain by actual or simulated IFR flight
operations. Actual IFR weather does not occur often enough; a third, qualified heli-
copter pilot is required in the cockpit for simulated IFR on scheduled flights; and the
helicopter operating costs are too high for dedicated training flights. The need exists
for a realistic simulator at a reasonable cost. To alleviate existing traffic operation,
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the New York Metroplex would have to be restructured to accommodate both CTOL

and VTOL traffic equitably.

2.3.3 AREA NAVIGATION

Area navigation (RNAV) appears to be the answer to the IFR needs of commercial

VTOL in the enroute and terminal areas, as well as for nonprecision approaches to low-

density terminals which could not justify an expensive landing system. By providing the

capability for direct point-to-point navigation, RNAV will permit discrete VTOL rout-

ings which are independent of existing traffic and which can avoid interference with

existing control zones, towers, natural obstructions, etc.

While discrete enroute airspace structuring for VTOL operations may be some-

what complex in the high-density corridors and areas, it is nevertheless feasible if the

helicopters are equipped to follow designated RNAV routings with a high degree of

accuracy. This accuracy will be required not only in the lateral and longitudinal

dimensions, but also in the vertical dimension (3-D RNAV) so that preestablished
"overpasses" and "underpasses" relative to CTOL traffic may be followed. Extensive

routing around CTOL traffic would be uneconomical, thus necessitating three-dimensional

RNAV route structures. Four-dimensional RNAV routes, where time is specified as well

as position, will undoubtedly be needed to achieve the one-operation-per-minute require-
ment for the high-density VTOL terminals.

The final approach may be carried out by reference to a ground-based landing
system, or by reference solely to an RNAV system. Also, a "point in space" approach
may be made using RNAV, and, if in visual contact with the surface, final approach
and landing may be completed under Special VFR criteria. In the climbout and depar.
ture phases, the IFR helicopter can follow RNAV flight paths to avoid conflict with CTOL
traffic, with the capability to apply speed controls readily as necessary to provide time
separation from other traffic.

The capabilities of the VTOL coupled with RNAV make possible IFR operations
virtually independent of CTOLs in high-density traffic areas, at high-density conven-
tional airports, and to and from heliports in city centers and at outlying landing areas.
A flight program to show the feasibility of IFR helicopter operations independent of
CTOL traffic, but within the ATC system, was carried out in the Washington, D. C.
area early in 1973 (Ref. 16). This "real world" demonstration used a Bell 212
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helicopter equipped with a 3-D RNAV system and a scanning beam microwave landing

system (MLS). The 3-D flight plans followed between Dulles (lAD) and Washington

National (DCA) are shown in Figure 14. An MLS approach was made at IAD, and a

3-D RNAV approach executed at DCA. These demonstration flights showed convinc-

ingly the feasibility of the vehicle, the RNAV system, and the scanning beam MLS

equipment.

2.3.4 IFR APPROACHES

In terminal area operations, the various advantages of the VTOL's flight

characteristics (ability to slow down readily, variable approach and climb gradients,

small landing area requirements) introduce many factors which favor IFR helicopter

operation over CTOL. Because the VTOL is capable of slowing down to a hover, an

IFR approach can be made to an arbitrary "point in space," displaced from the desired

landing site; the VTOL can then air taxi VFR to the landing spot after breaking out

beneath the weather.

In anticipation of the coming IFR helicopter era, the FAA recently established

several regulations specifically relating to helicopter IFR operation (Ref. 17). One is a

recognition of the "point in space" approach. At the same time, the VTOL's unique low-

speed landing capability has been recognized and helicopters are permitted to reduce

visibility minimums to one-half the published values for CTOL. However, no complete

definition of VTOL precision approach categories has been established by the FAA. For

the purpose of this investigation, a proposed set of consistent VTOL approach categories

has been formulated using criteria such as "see to hover," "see to air taxi," etc. Table 6

compares these suggested VTOL precision approach categories with their CTOL equivalents.

Comparable categories show the ceiling and/or visibility for VTOL to be about half that

for CTOL. Using the proposed criteria, comparisons between CTOL and VTOL instrument

operations are more realistic.

The lower speed and hover capability of VTOL aircraft make low IFR approaches
safer than for CTOL aircraft. Since they minimize the necessity for the "missed approach"

and its associated problems for both the pilot and the air traffic controller. However, every

helicopter instrument approach requires a missed approach procedure similar to those of

conventional aircraft, which must be executed if unable to land or proceed VFR upon
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Table 6. Proposed VTOL Precision Approach Categories and CTOL Equivalents.

Category Ceiling RVR Criteria
Ctegory (ft) (ft)

200 2400 See to land - auto approach to 200 ft; visual
transition and flare

11 100 1200 See to land.with lights - auto approach to
100 ft; autoflare; visual runway guidance

CTOL on rollout
CTOL

Ilia 0 700 See to touchdown

IlIb 0 150 See to taxi

IlIc 0 0 No visual contact

I 100 1200 See to hover

II 50 600 See to hover with lights

VTOL Ilia 0 1501 See to air taxi

IlIb 0 75 See to ground taxi

Illc 1 0 0 No visual contact

reaching the missed approach point (MAP). For automatic VTOL approaches all the way

to touchdown, the missed approach point is actually the landing point. Nevertheless,

the requirement still exists for a missed approach procedure, since it is often executed

prior to reaching the MAP for reasons other than lack of visual contact. For example,

traffic conflicts, loss of navigation aids, loss of communication, emergencies in the

cockpit or at the heliport, etc. would all require the approach to be aborted. Although

the missed approach procedure might be to hover in place, this is not desirable for fuel

economy or where proximity to the ground or obstacles could be hazardous. Consequently,

current regulations requiring a routing and holding fix in the event of a missed approach

are not expected to change.
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2.4 OPERATIONAL PROCEDURES

To achieve maximum efficiency of service, VTOLs must be able to operate
essentially independently of CTOL aircraft. Such independent operation involves
separate VTOL flight paths enroute, in terminal areas, and during landing/takeoff.
Here again RNAV can play an important part in facilitating the use of discrete routings.
During the takeoff and landing phases these routes will be dictated primarily by noise
restrictions, obstacle clearance, and aircraft capabilities. Interaction with CTOL air
traffic, existing route structures, and the VTOL aircraft capabilities will be major con-
siderations during the enroute and terminal phases.

2.4.1 LOW-ALTITUDE ENROUTE AIRWAYS

The proposed VTOL enroute airway structure consists of a system of one-way
RNAV routes connecting the major terminals (Fig. 15). For the pure helicopter, these
Zulu airways would be established below the existing low-altitude Victor airway
structure for CTOL traffic. However, for the longer stage lengths of the compound
helicopter, the Zulu airways would share the low altitude airspace with CTOL traffic,

/ USE VFR HEMISPHERIC 
ALTITUDES\

ONE-WAY HIGHWAYS IN SKY ONE-WAY HIGHWAYS IN SKY

1000 -2500' AGL 1000'-2500' AGL

WDC NYC BOS

INDEPENDENT LOW ALTITUDE TERMINAL
ROUTE STRUCTURE CONNECTING V-PORTS

Figure 15. VTOL Airway Structure.
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since (by design) the compound helicopter performance is essentially the same as CTOL

aircraft during cruise. The upper-level Zulu routes would utilize the standard VFR

hemispheric altitudes, and would take advantage of relatively unused airspace resulting

from limitations in the CTOL ATC communications/surveillance facilities. The high and

low altitude Zulu routes would be joined with the destinations by means of Tango connectors.

For the low-altitude airways, the criteria for obstruction clearance enroute will

be based on the results of an FAA flight evaluation program for VTOL (Ref. 18). These

criteria call for a minimum obstruction clearance altitude (MOCA) of 500 ft above

obstacles within + 2 nm of centerline tapering to zero altitude clearance for obstacles

+3 nm of centerline, as shown In Figure 16. Traffic clearance enroute will avoid the

airport traffic area around an operational control tower as defined by current Federal

Air Regulations (5 statute miles; 3000 ft AGL). An arbitrary clearance of 2 nm and

1500 ft above ground level (AGL) will be established around principal uncontrolled air-

ports. Noise pollution is not expected to be a problem in the enroute phase; however,

major urban areas would be avoided, and the routes could be shifted periodically to

eliminate the integrated annoyance effect.

2.4.2 TERMINAL AREA ROUTES AND APPROACHES

A set of RNAV Tango transition routes will be defined to correct the Zulu

airways and destination heliports. An arrival Tango will take the VTOL to a specified

waypoint from which the approach commences.

In the absence of constraints, normal helicopter approaches are essentially

parabolic with constant rate of descent and constant longitudinal deceleration. Future

VTOL must be capable of landing in the same weather conditions as future CTOL airliners

(Category II or III) but along steep, curving glide paths. Since CTOLs use most of the

airspace downwind of major airports for approaches, VTOLs will often be left with air-

space requiring crosswind approaches. For a heliport, a minimum of only two approach

paths are needed to tolerate high wind conditions; crosswinds pose no problems, but the

helicopter cannot accept downwind approaches because of the vortex ring state. Care

must be taken in applying specific landing geometry configurations to a wide variety of

city center heliports since they each have site-dependent features which constrain approach

and departure paths.
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Figure 16. Proposed Helicopter Airway (Ref. 18).

Consideration has been given to the IFR handling of VTOL traffic at CTOL
airports. At the present time, the ILS approach to the active runway blocks a wall of
airspace that is typically 10 miles long and 1500 ft high. This creates a problem for
VTOL traffic desiring to cross the active runway without interference to the CTOL
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traffic flow. It is proposed that the airspace directly over the runway be shared such
that the CTOL traffic remains below 500 ft AGL over the runway, and VTOL traffic has
free access to cross perpendicular to the CTOL traffic at 1000 ft AGL (Figure 17).

Failure to allow IFR crossing of the CTOL runway in this way would necessitate an
approach capability to both sides of each CTOL IFR approach course, followed by air

taxi across active runways under CTOL ATC clearance.

VTOL CROSSING AT 1000'

1000 50

500' 019
500'- loo,6

CTOL PROTECTED
AIRSPACE

5 4 3 2 I O RUNWAY
NM

VTOL APPROACH

VTOL PAD

CTOL I __ __ CTOL
8 // ,RUNWAY/ a

APPROACH R DEPARTURE

VTOL CROSSING
AT 1000'

Figure 17. Suggested Noninterfering VTOL Approach to Conventional
Airport.
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After the 1000 ft crossing, descent will take 2 minutes at 500 ft/min; to

expedite the approach, turn to the pad should begin as soon as possible. At standard

rate (3 deg/sec) and 60 knots, this leads to a turning, descending approach with a turn

radius of about 2000 ft, which fits conveniently into the typically available airspace.

This procedure has the advantage of keeping the two traffic flows independent and

without mutual interference. It also influences the characteristics of the VTOL approach

procedure and-the associated guidance requirements.

This spiral technique can be generalized to accommodate arrivals from all

directions and could handle multiple helicopters in a "descent tube," as shown in

Figure 18. The descent tube would be established in a vacant airspace sector of the

HELICOPTER
ENTRY I

HELICOPTER
ENTRY 2

PAD

HELICOPTER

ENTRY 3

SPIRAL TUBE

Figure 18. Spiral Descent Approach to CTOL Airport.

CTOL airport, with rotorcraft entries occurring above the CTOL approach/departure

patterns. The spiral descent has most of the advantages of a vertical descent, but

requires less power, maintains forward airspeed and controllability, and avoids the
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vortex ring state. The spiral is not restricted to CTOL airports, but can be applied to

single or multiple pad V-ports as well, with provisions for a missed approach (Fig. 19).

2.4.3 TRAFFIC INFORMATION SYSTEM

A key element of the independent VTOL route system is the requirement for a

reliable traffic information system. Since it will not be possible nor equitable to prohibit
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LEG LEG
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--- - ALTERNATE FINAL LEG

INITIAL LEG

4- MISSED APPROACH
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Figure 19. Spiral Descent Approach to Heliport.
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non-VTOL aircraft from entering the Zulu/Tango airspace, the price of admission to

the system will be the equipment to "see" other equipped traffic despite restrictions to

visibility. Users of the low altitude structure will have to provide their own separation

because they will be below ATC radar coverage a large percentage of the time. This

requires some type of self-contained traffic information system or collision avoidance

system (CAS) in order to operate IFR. Several possibilities being considered for such

a system are shown in Table 7. To operate independent of ATC at higher altitudes will

require dedicated airspace which again could not be justified unless other equally-

equipped aircraft were also permitted to enter. Similarly, within a Terminal Control

Area (TCA) dedicated Tango connector tubes could be established that do not require

clearance from a controller, but do require CAS equipment on board. These tubes

would take helicopters from cruise altitude to their low altitude structure independent

of the conventional traffic.

Table 7. Possible Traffic Information Systems.

1. Synchro-dabs with ground broadcast of all traffic. (Has problem
with coverage at low altitude)

2. Synchro-dabs with "listen" - CAS. (May need special inter-
rogator or announcer for low altitude)

3. LORAN-C with random announcement by individual A/C

4. DME multilateration with random announcement by individual A/C

5. LORAN-C with time slot announcement by individual A/C

6. DME multilateration with time slot announcement by individual
A/C

7. Transponder CAS

8. Time-frequency CAS

2.4.4 EXAMPLE VTOL OPERATIONS ANALYSIS FOR
MFTRC)OPO ITAKI RCTONKI

This section presents some results from an example analysis of VTOL operations

in the metropolitan Boston area. It illustrates how the interrelated aspects of operations
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safety, economy, environment, VTOL/CTOL traffic, heliport location and community

noise requirements must be integrated and indicates the effect of the city-center environ-
ment on VTOL terminal operations.

In Reference 19, a steepest ascent procedure was used to determine fuel-

optimal takeoff and landing paths for an intra-urban VTOL vehicle. The object was to
minimize costs associated with fuel and time, subject to safety, traffic and noise

constraints. The terminal airspace was divided into noise-restricted and nonrestricted

volumes (Fig. 20) in order to constrain the VTOL from exceeding stated criteria. Noise-
restricted zones were determined by applying the following sound energy decay law
(Ref. 20) to each noise sensitive area (hospital, residential, etc.) surrounding the

heliport:

E UNACCEPTABLE

MARGINALLY ACCEPTABLE

PLAN VIEW:

h=h I

HELIPORT

SIDE VIEW:

DEPARTURES

ARRIVALS

INDUSTRIAL RESIDENTIAL

Figure 20. Community Acoustic Isolation Near Typical Heliport.
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dB = dB 1 - 20 logl 0 (d/d 1 ) (5)

where dB1 = known noise level at d1 (aircraft noise rating PNdB)

dB = noise level at distance d (PNdB).

If the community response criteria is known, then this equation allows the calculation

of the distances corresponding to the allowable noise levels for each area. As shown

in Figure 20, the noise-contaminated airspace is characterized by varying degrees of

sensitivity which correspond to acceptable, marginally acceptable, and unacceptable

noise levels (Ref. 21). The degrees of sensitivity are established to account for

uncertainties in the anticipated community response since reaction to noise varies

widely from person to person. Suitable corrections may be included to account for

attenuation characteristics, number of flight operations per hour, and time of day.

Obstacle clearance is provided by requiring aircraft to operate outside the

restricted cylindrical volumes of airspace that result from assigning lateral and vertical

clearances to each major obstacle in the terminal area. In the immediate vicinity of

the vertiport where this requirement would be impractical, approach clearance surfaces

are used to specify the minimum descent angle that an aircraft must maintain in order

to clear surrounding obstacles during an approach to landing. Figure 21 indicates the

obstacle clearance requirements for the final phase of an instrument approach to a

potential heliport site servicing downtown Boston (Ref. 21). The figure indicates the

minimum permissable descent angle for all approach azimuths; a 100 descent angle

satisfies the clearance requirements in most instances.

HELIPORT
B2 -

}70

??to 0 1280

120

Figure 21. Restricted Airspace for VTOL Approaches
to City-Center Heliport.
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A satisfactory model of the terminal airspace utilization may be realized by

examining several altitude plans at 500-ft intervals up to 2000 ft. Figure 22 shows the

airspace utilization chart at an altitude of 500 ft for metropolitan Boston (Ref. 22).

It illustrates the influence of noise and obstacle constraints on VTOL operation at the

proposed heliport site. The major constraint at low altitudes is clearly noise, and

BAY

HELIPORT B-2 LOGAN

SAIRPORT

BOSTON

CE HARBOR

OBSTACLE RESTRICTIONS AT 500 FT ]NOISE ALLOWABLE AT 500 FT

I NOISE RESTRICTED AT 500 FT F UNRESTRICTED AREA

Figure 22. Boston Airspace Utilization at 500-ft MSL.

there is little variation in the noise-contaminated airspace between ground level and

500 ft. Air access is severely limited at all potential heliport sites and consequently

operation in the marginal noise zones cannot be avoided at low altitudes.

Clearly, the tradeoff between proximity to the central business district and

community response is of considerable importance in implementing VTOL operations.

Since the advantages of VTOL aircraft accrue from operations near the city center,

every effort should be made to reduce aircraft noise. It was found that at the higher
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altitudes, generally above 1000 feet, the noise restrictions diminish rapidly until at

2000 feet practically no noise-contaminated airspace remains.

The airspace utilization charts permit the synthesis of approach and departure

paths by routing the VTOL around obstacles and between the most critical noise zones in

the terminal area. In selecting the flight paths, a compromise is necessary between the

opposing requirements of steep glide slope angles for noise abatement purposes and shallow

glide slope angles for aircraft controllability and fuel consumption considerations. There-

fore, the minimum glide slope angles that allow operation out of the marginally acceptable

zones are specified, except where the noise constraint predominates (usually < 1000 feet),

Figure 23 shows the resulting approach paths to heliport B-2. Curvilinear paths with

steep and variable glide slope angles are essential to avoid obstructions and noise sensi-

tive zones in the metropolitan area. In almost all cases, a 150 final approach angle was

required in order to reduce the noise impact on the surrounding communities. Since the

0
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Figure 23. VTOL Curved Approach Paths to Heliport B-2 in Boston.
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maximum angle required for obstacle clearances at this heliport is 120 (Fig. 21), the

final descent angle is actually specified for noise abatement reasons. A comparison of

Figures 22 and 23 shows that in order to avoid the noise sensitivity zones, narrow

approach corridors must be established which only allow lateral deviations of about 300

feet about the nominal path. Finally, none of the sites examined have omnidirectional

approach capability. The noise and obstacle constraints severely restrict air access near

the city center.

2.5 COMMERCIAL VTOL NAVIGATION REQUIREMENTS

The previous development and analysis of VTOL commercial operations has

indicated a number of requirements for the navigation and guidance system. The

basic requirement is to provide VTOL operations over airways, approach paths, and

landing facilities that are independent of, and non-conflicting with CTOL operations.

This section discusses the avionics requirements in more detail.

2.5.1 INFORMATION REQUIREMENTS

The onboard and ground based systems must provide the following types of

information to the pilot of a VTOL aircraft in all-weather commercial operations:

* Aircraft Status - basic information which affects the aircraft's
ability to takeoff, cruise and land safely (fuel status, loading
conditions, power plant performance, etc.).

* Systems Status - required to monitor and manage the operational
status of all avionics and other subsystems (guidance, communica-
tions, control, etc.).

* Situation Information - required to make valid judgments regarding
future actions (present track, speed, altitude, vertical velocity,
time, aircraft position and any error in position).

* Command Information - required to efficiently control the air-
craft's flight path (error in expected time of arrival, start of
climb and descent points, steering commands, power changes).

* Special Navigation Procedures - needed to cope with a variety
of special procedures involving computation, analysis and judg-
ment (alternate routings, slant tracks, control time maneuvers).
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* Special Operational Procedures - required to comply with special
noise abatement procedures during takeoff and climbout, and
speed and noise restrictions during the approach and landing phase.

* Environmental Data - significant flight path variables are
influenced by ambient temperature, wind direction and velocity,
atmospheric pressure, density altitude, and natural hazards (ice,
restrictions to visibility and turbulence).

* Hazard Avoidance - to safely manage the aircraft's flight path
requires knowledge of the heliport situation, presence of turbu-
lence, location of obstacles, and proximity to other aircraft.

* ATC-Related Control Information - requires information about
radius of turn, rate of closure, proximity to other aircraft, inten-
tions of aircraft approaching a conflict situation, terminal
situation at expected time of arrival, and path stretching and
speed control capabilities.

* Communications - Navigation/ATC Related - the ability to request,
receive, revise, acknowledge, and evaluate clearance and
instructions.

A variety of navigation systems which provide one or more of the above classes
of information are in operation and/or under development. These systems are discussed
in Section 3. A general listing of the required features for the VTOL navigation system
is presented in Table 8. This table serves as a preliminary checklist for evaluating the
existing and planned systems described in Section 3.

Table 8. Preliminary Navigation Requirements Checklist.

Non-Saturable Time Independent

Minimize Nav. Frequency Map Referenced
Line-of-Sight Independent Common Output Format
Area Coverage Growth Oriented
Real Time Adaptive Flight Path
All Weather Capability

Minimal Number of Ground Generate ATC Surveillance
Stations Data

Flexible to ATC Route Compatibie with information
Needs

Structure/Vector Satisfy Accuracy Constraint
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Many of the requirements in Table 8 are qualitative and/or relative in nature

and are not amenable to the establishment of quantitative bounds. A brief discussion of

each item in the table is presented below:

* Non-Saturable

Certain navigation systems can accommodate only a limited number
of users simultaneously, or the system accommodates users at a
limited rate. These limits can constrain the navigation
and guidance system. For example, a DME station saturates when
interrogated by more than about 200 aircraft; receiver sensitivity
is reduced when the interrogation rate is too high, thereby cutting
off service to more distant users. Conventional ILS glide paths
can handle only one aircraft on final approach at a time because
of multipath errors created by reflection from the aircraft.

* Minimize Nav. Frequency

Radio navigation systems have portions of the frequency spectrum
dedicated to them. This load on the available spectrum is
measured by the required bandwidth. VOR is a particularly
heavy user because each ground station is on a different frequency.
Omega is good because all stations around the world time-share a
few common frequencies.

* Line-of-Sight Independent

Very high frequency radio energy travels only in straight lines.
Ground-based, high frequency systems are therefore range limited
by the altitude of the user. Satellite systems avoid the problem
by placing the station at very high altitude. At very low fre-
quency the Earth and the ionosphere form a wave guide that
propagates the energy around obstacles following Earth's curvature.

* Area Coverage

Several factors affect the area coverage of a navigation system.
Line-of-sight has already been considered. The power level of
radio transmitters is also important and can be highly directive.
Coverage may also be affected by the geometry of the transmitting
stations. Hyperbolic systems offer no information to an aircraft
which is on the extended baseline of a station pair.

* Real Time

Certain navigation systems do not provide continuous position infor-
mation. Omega, for example, only gives a position fix every 10
seconds. Satellite systems will probably give position fixes at a
much slower rate. There is also a delay for signal processing and
transmission between the time at which the position fix was taken and
the time at which it is available. For satellites this delay will be
several seconds. Other systems such as DME and Loran, require a
delay for lock-on before navigation information is available.
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* All Weather

Several radio navigation systems give degraded performance under
certain weather conditions. Flight through rain or snow causes
precipitation static that in turn causes loss of low frequency signals
received with electrostatic antennas. The problem can be solved
by using a loop antenna, but the direction to the station must be
known to correct for the 180-degree phase shift caused by loop
rotation. Snow on the ground distorts an ILS glide slope. Solar
ionospheric disturbances can strongly affect radio transmission at
certain frequencies.

* Minimal Number of Ground Stations

The installation and maintenance cost of a navigation system is
related to the number of ground stations, which ranges from none
for inertial systems to several hundred for VOR navigation.

* Flexible to ATC Route Structure/Vector

All area navigation systems provide this type of flexibility. The
conventional ILS is an example of a system which does not, since
there is only one path along which it can be used.

* Time Independent

Some systems have markedly different accuracy depending upon
the time of day. One primary reason is due to the change in the
nature of the ionosphere in sunlight as opposed to shadow. Omega
accuracy varies from roughly one mile in daylight to approximately
two miles at night. Loran has a similar characteristic.

* Map Referenced

Most systems could be used to give position in latitude and longi-
tude map coordinates, but only at considerable expense in onboard
computation. VOR/DME, for example, gives rho-theta coordinates
relative to a VORTAC station. Automatic conversion to map coor-
dinates requires storage of the latitude, longitude and altitude
coordinates of the VORTAC stations and a coordinate transformation.
The computation is slightly easier for hyperbolic systems because
there is no altitude correction and there are fewer ground coor-
dinates to be stored.

* Common Output Format

ARINC specifications have favored output in the form of track
relative to selected waypoints. As with the previous consideration,
it is possible to do this with most systems, but it may be more
difficult with some. The coordinates used for waypoint insertion
will probably vary from system to system.
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* Growth Oriented

VOR coverage growth is limited by bandwidth; continued channel
splitting will be limited to preclude signal overlap. The micro-
wave LGS is growth-briented from the simplest configuration to
the most advanced.

* Adaptive Flight Path Capability

This refers to the difficulty involved in route changes during flight.
The comments under "Map Referenced" and "Common Output
Format" also apply here.

* Generate ATC Surveillance Data

The repeatability and accuracy of.position coordinates given by
the system is the major factor that determines whether or not it
could serve as the data base for surveillance. If the system can
resolve two aircraft with an accuracy of under a mile it could
probably qualify.

* Compatible with Information Needs

Certain navaids provide only limited information and alone cannot
satisfy all the requirements. Examples of this are marker beacons
which only give a single position fix and conventional ILSs which
only establish position along a line. These may not be compatible
with curved approaches that are shifted in time to accommodate
changing wind or environmental constraints.

* Satisfy Accuracy Constraint

The position and/or velocity accuracy of each system is a primary
consideration. It should be specified in terms of a 95 percent
likelihood in appropriate units.

2.5.2 ENROUTE/TERMINAL REQUIREMENTS

The navigation system must provide accurate and continuous position and course

guidance information to all interested users under all weather conditions. The VTOL

navigation requirements are summarized below in terms of the operational functions
(Ref. 23) in Table 9.

* Route Guidance

Increased enroute traffic, multiple VTOL terminals, short stage
lengths, and CTOL traffic suggest that navigation via fixed
routes must be replaced by a more flexible area navigation
system. The requirement for an RNAV system further suggests
the necessity for a pictorial navigation/position display.
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* Table 9. Enroute/Terminal Navigation Requirements Summary.
,I

I
Function Mode Enroute Terminal Capacity Outputs Accuracy

Coverage Coverage Required Factors

Route Cruise Alt. Low Alt. Cooperative: High Position Operationalm Guidance RNAV NE Corridor <25 Miles Self- contained: Course Deviation Environment
z Low Nayv. Command
ED Separation

Vertical Terminal & Cooperative: High Position Standards
D Guidance Enroute Self-contained: Course Deviation Data Updat

Low Altitude Command Rate

SAutopilot All II I System Monitor Safety
1 Coupling Functions Standardsz

0,-I

z Collision Cooperative Low Hazard Location
Avoidance System Command Man-

euver Course
a ReturnC

ImTraffic Cooperative
Information System " " Low In-Trail Commands0

m4



* Vertical Guidance

In the current system, no guidance is provided in the vertical
plane except for the ILS glide slope. With increased traffic
loads, particularly in the terminal areas, and as airspace
utilization becomes more critical, it will become necessary
to provide precise vertical guidance during ascent and descent.
The vertical guidance information could be either self-generated
or established from external sources.

* Autopilot Coupling

Any navigation system selected must be capable of operating with
the vehicle's autopilot. Complete three-axis vehicle control with
pre-programmed lateral and vertical maneuvering commands
appears to be an essential VTOL requirement. Additional com-
plexity results when the automatic flight control system must
provide long duration vertical ascent and descent guidance and
during hovering.

* Collision Avoidance

In order to achieve independent operation, the system must be
capable of providing the pilot with information to ensure safe
operation of vehicles. More advanced systems should provide
appropriate display information to indicate the form and direction
of escape maneuvers. Appropriate consideration must be given
to the variety of interacting vehicles and their differing speed
and maneuverability characteristics. Resumption of normal navi-
gation must be expeditiously accomplished following the traffic
avoidance maneuver. Integration of the CAS function and the
basic navigation function may be possible using a cooperative
navigation system.

* Traffic Information

A different aspect of the vehicle proximity guidance is the require-
ment to maintain separation of aircraft in trail either enroute or
in the terminal area. The return to the aircraft of the responsi-
bility for maintaining vehicle separation even under IFR con-
ditions represents a departure from current procedures. This
approach may be necessary for high traffic densities and for
independent VTOL operations.

Reliable navigation coverage must exist for all operating areas of the VTOL

system. Enroute navigation coverage should be continuously available for all altitudes

from the minimum enroute altitude for the pure helicopter to the maximum cruising

altitude of the compound helicopter throughout the Northeast Corridor. The minimum

enroute altitude may be as low as 1000 feet AGL in some areas. Reliable navigation

must exist despite terrain or obstacle shielding and despite precipitation or atmospheric

effects.
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Terminal area coverage requirements are similar to the enroute requirements

except that there is increased emphasis on lower altitude coverage in metropolitan areas.

The terminal area extends approximately 25 miles from the landing site. Altitude coverage

may be required below 1000 feet in many areas.

Any passive navigation system such as the VOR has unlimited capacity. Like-

wise, completely self-contained systems cannot be saturated. However, two-way navi-

gation systems such as DME have finite limits as to the number of users. Any two-way

system must be capable of supporting all airborne vehicles desiring to use the system.

Pilot display requirements include a direct readout of current position and course

deviation. Such a system must permit the pilot to operate in an area navigation environ-

ment and to fly any preselected courses within the desired area. Integration of terrain,
obstacles, hazardous weather conditions and conflicting aircraft into the navigation dis-

play is desirable.

As indicated in the table, several factors have an impact on the navigation

system accuracy:

* Operational Environment

The basic purpose of the navigation system is to allow the vehicle
to travel from point to point conveniently and efficiently in all
weather. Further, the navigation system must allow routine
operations in conformance to an established schedule in order to
make the VTOL operation commercially feasible.

* Separation Standards

Current radar separation standards must be reexamined in light
of the increased traffic demands and advancements in vehicle
and avionics technology. All factors suggest the desirability
of reducing the VTOL separations in order to increase system
capacity; however, the feasibility will have to be demonstrated.
Any reduction in separation standards implies a corresponding
requirement of increased navigation system accuracy and an
onboard proximity warning or conflict detection system.

* Data Update Rate

The position accuracy is directly related to the navigation system
data update rate, which becomes increasingly more important at
higher speeds. Solutions to the problem involve tradeoffs between
passive versus active navigation technologies. Passive navigation
systems such as VOR or Omega provide position information at a
fixed rate. Two-way navigation systems such as DME or TACAN
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have a finite limit to the number of simultaneous users and a
finite update cycle time. However, except under conditions
of saturation, the update cycle time is low and the user is under
the impression of receiving continuous navigation information.
The systems most affected by update rate are self-contained such
as an inertial platform, which accumulates a position error over
time until an external update signal is provided.

2.5.3 APPROACH/LANDING REQUIREMENTS

The VTOL avionics system must provide landing and takeoff guidance to

acceptable weather minima at each of the designated landing sites. The approach,
landing and takeoff requirements for VTOL are discussed below in terms of the necessary

functions (Ref. 23) shown in Table 10.

* Variable Approach Paths

In order to provide increased flexibility at the VTOL landing sites,
multiple directions of approach should be available under the
minimum weather conditions. To minimize equipment costs (air-
borne and ground), a single navigation system should provide the
information for all of the multiple approaches.

To further enhance the traffic flow, traffic sequencing, and inte-
gration with CTOL vehicles at the major terminals, multiple
approach paths and a variable glide slope angle should be
selectable.

* Takeoff Guidance

The terminal guidance systems will also be required to provide
takeoff/departure guidance. Variable course and ascent paths
must be available to permit the vehicles to efficiently enter the
enroute (or neighboring terminal) navigation system. *Guidance
in the vertical plane should be considered as essential for take-
off as for landing.

Table 10. Approach/Landing/Takeoff Requirements Summary.

Function Mode Coverage Capacity Accuracy
Required Display Factors

Variable Automatic Low Moderate Path Deviation Separation
Approach Altitude Command Standards
Paths <5 Miles Guidance

Takeoff Automatic Low Moderate Path Deviation Traffic
Guidance Altitude Command Density

<5 Miles Guidance
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Obstacle clearance and avoidance will become a more active function with

the advent of VTOL operations. As flights into less prepared sites and enroute opera-

tions at low altitudes increase, an automatic and positive means of obstacle and terrain

avoidance is required. Potentially hazardous conditions must be displayed to the pilot

in a manner so that he can safely react and correct the situation.

Geographic coverage must be available within the vicinity of each landing
site. Range of coverage should extend beyond the point of interception of the final

approach course. Altitude coverage should exist above the final approach interception
altitude and continue down to the surface. Precipitation, terrain, and obstacle shield-
ing effects should be minimized.

The capacity of the navigation system must be sufficient to handle all poten-
tial users. Peak VTOL operations of up to 60 per hour at each VTOL port are contem-
plated, and at any one time each landing/takeoff system must service six to ten users
per site. Thus, all-weather capacity at each V-port must equal or exceed current
CTOL IFR maximums and also provide for future growth.

An integrated display takeoff/landing/enroute navigation course information
seems appropriate for VTOL operations. Two-dimensional course deviation information
and flight path progress information should be provided for landing, takeoff and missed
approach guidance.

Even though CTOL vehicles will not be using the VTOL landing sites there will
be many joint use airports. Consequently, it's very desirable that the VTOL and CTOL
landing/takeoff systems be compatible, and eliminate the need for VTOL aircraft to
carry two landing systems, or for the CTOL airports to install two landing systems. The
same basic equipment should provide the appropriate flight path guidance which best
meets the performance characteristics of each vehicle.

Two related accuracy factors are separation standards and traffic density.
Currently, under positive terminal radar control, all IFR operations require three miles
longitudinal separation and one mile lateral separation (parallel runways). Reduction
of these separation standards will require a corresponding increase in landing/takeoff
guidance accuracy. Directly related to the separation standard problem is the amount
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of traffic and its performance characteristics. High traffic densities are the incentive

to reduced separation standards. Variation of approach and departure speeds tend to

increase separation requirements.

2.5.4 QUANTITATIVE NAVIGATION REQUIREMENTS SUMMARY

Many of the requirements defined in the previous discussions have been pre-

sented qualitatively. Quantitative requirements for certain parameters in each of the

various phases of operation are summarized in Table 11.

The requirements in Table 11 are presented to be representative of the majority

of anticipated commercial VTOL operations. However, it must be emphasized that

each specific operation will require detailed evaluations to establish its own precise

navigation requirements. In a few situations, these may be considerably more restric-

tive than the guidelines presented herein. But, if the general requirements were to

accommodate every foreseeable alternative, they would be far too restrictive for the

majority of users, and consequently much too expensive as well.

2.5.4.1 RANGE REQUIREMENTS

The range requirements are based on the premise that appropriate navigation

information should be available throughout each particular phase of operation. The

takeoff and landing operations are considered to be complete within a 5 nm radius of

the heliport, which is the same radius as a conventional airport control zone. The

terminal area was defined by a radius of 25 nm for purposes of this study. Complete

navigation information should be available throughout the range of cruise operation.

2.5.4.2 COVERAGE REQUIREMENTS -AZIMUTH AND ELEVATION

The coverage requirements are based on the premise stated above; i.e., that

navigation information should be available throughout the entire phase of operation.

The coverage requirement for elevation in the landing phase does not exceed 200

because there has been no general need established for steeper approaches. The 200

applies to the sloped portion of the approach only and assumes that any .final verti-

cal segment, spiral tube, hover or air taxi, takes place within the 0-200 coverage.

(Note that the apex of the angle would not be at the touchdown point in these cases.)
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Table 11. Quantitative Navigation Requirements Summary.

Parameter Takeoff and Terminal Area CruiseLanding

I. Range Requirements 5 nm 25 nm complete

2. Coverage Requirements
Elevation 0 - 200 500 - 10,000 ft 1500-30,000 ft
Azimuth +900 All All

3. Requirements for Operation to within 0.5 nm 2 nm
in Proximity of Obstacles 500 ft minimum minimum

separation separation

4. Accuracy Requirements:
Range 25 ft 500 ft 2000 ft
Velocity 2 kt 5 kt 10 kt
Angular 0.050

5. Multiple Aircraft 1 landing/min 500 peak
Requirements 1 nm longi- airborne

tudinal count
spacing

6. Multiple Pad Requirements 400 - 800 ft
spacing

7. Inertial Smoothing 2 kt INS for
Requirements velocity Depends on navaid

control

8. Reliability/Redundancy Cat. V - II - Dual autopilot or autopilot plus
Requirements independent monitor

Cat. V - III - Triple redundancy

9. Update Rate Requirements 1 sec 4 sec 10 sec

10. Data Link Requirements 8000 bits/sec 8000 bits/sec 8000 bits/sec

11. Ground/Air System Tradeoff Need Both

12. Requirements for Signal No Multipath Need study
Continuity and Fidelity, Use ICAO ILS of urban RF
Including Proximity of standards interference
Obstacles

13. Inertial/Radio-Inertial 2 kt INS Lower quality INS satisfactory with
Requirements for velocity radio update

control
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The azimuth coverage has been limited to +900 by the fact that actual approach paths

to proposed sites do not arrive from all directions; constraints imposed by noise, traffic

and obstructions limit the possible approach directions, hence a 3600-azimuth coverage

requirement in the landing phase is too restrictive. Experience with ILS and MLS has

shown that it is very difficult to achieve large azimuth coverage, avoid multipath,
and meet accuracy requirements simultaneously. (The former FAA requirement for all-

azimuth localizer coverage was reduced to 350 for this reason.) RTCA Special Committee

117 called for +600 for Cat III MLS to accommodate CTOL curved approaches to

closely spaced parallel runways. The requirement for +900 is considered necessary to

accommodate Cat III approaches to multiple landing pads.

Coverage in the terminal area should include all altitudes between 500 ft

and 10,000 ft which are the normal extremes of terminal area operations. Coverage

enroute needs to extend down to 1000 ft above ground level, where the feasibility

of VTOL airways, has been demonstrated. Cruise coverage should extend to the highest

altitude which might be used. The choice of 30,000 ft is above the ceiling of the

rotorcraft studied here, but high enough to accommodate future advanced VTOL ve-

hicles. However, high altitude coverage is not normally a difficult requirement for

enroute navigation systems.

2.5.4.3 REQUIREMENTS FOR OPERATION IN PROXIMITY OF OBSTACLES

Helicopter requirements for separation from obstacles in the terminal and

landing areas have been established by the FAA TERPS Manual (Ref. 17). The

required clearance is specified by defining plane surfaces below the approach path

through which no obstacles are permitted to penetrate, as illustrated in Figure 24.

In the primary area, the surfaces are level in a direction perpendicular to the approach

course and slope up from the heliport or missed approach point along the approach

course. In the secondary area, the surfaces also slope up in a direction perpendicular

to the approach course. The boundaries of the areas taper outward from the heliport

as shown. For normal VTOL operations to occur in close proximity to buildings,

steep and curved approaches will be necessary to meet the TERPS requirements. Con-
sequently, obstacles will be expected near the boundaries established in the TERPS

manual. The width of the primary area for a precision approach is 500 ft at the point
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Figure 24. Clearance From Obstacles.

where the glideslope intersects the ground and tapers to a 1 nm width at a range of about
3 nm. The entries shown in Table 11 are intended to give a rough indication of.the
requirements specified in detail by the TERPS manual. The cruise separation was es-
tablished in Section 2.4.1.

2.5.4.4 ACCURACY REQUIREMENTS

The horizontal accuracy requiree'its were estralisnea by using the separations
described above. The landing guidance position error of 25 ft (2a) is approximately the
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same as the goal for CTOL CAT Ill lateral touchdown dispersion (Ref.24). The 2 kt

velocity requirement for landing is based on Reference 25, while the 10 kt cruise re-

quirement is consistent with the FAA procedure for reporting airspeed to the nearest

10 knots and also the fact that the surveillance radar systems only estimate ground

speed to 10 knots. A 5-knot velocity requirement in the terminal area was chosen as

an intermediate value between cruise and landing specifications. The landing guidance

angular accuracy requirement of 0.050 is slightly higher than the ICAO standard for

CAT II ILS. The angular accuracy requirements for terminal and cruise are range de-

pendent, and should be accurate enough to provide the linear accuracy given in the

table. Vertical accuracy is partially covered by specification of the glide slope

requirement. Absolute altitude should be known to one part in one hundred which

is available from state of the art radar altimeters. Near touchdown the vertical speed

should be known to 0.2 ft/sec. A typical touchdown descent rate is about 2 ft/sec

and 10 percent accuracy should be adequate to prevent a hard landing.

2.5.4.5 MULTIPLE AIRCRAFT REQUIREMENTS

The landing guidance system must be able to handle aircraft at a rate of one

per minute with a nominal longitudinal spacing of one nm, based on a nominal final

approach speed of 60 knots. As with CTOLs, the minimum separation may ultimately

be limited by the presence of wake vortices from the preceding aircraft which causes

the spacing to depend on aircraft size. The lack of existing information on the magni-

tude of the wake vortex problem for rotorcraft creates uncertainty in the spacing require-

ment. The terminal area peak airborne count of 500 aircraft includes CTOL traffic.

Since the mean time each aircraft spends in the terminal area is under 20 minutes, an

average of over 25 aircraft will enter and exit each minute to maintain the airborne

count at 500.

2.5.4.6 MULTIPLE PAD REQUIREMENTS

Based on the pad sizes given in Table 1 the spacing between pads is established

at 400 to 800 feet between centers, which allows for a between-pad clearance equal to

one pad diameter. Simultaneous approaches to individual pads would have to be time

synchronized; independent approaches would guarantee only 400-800 feet separations.
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2.5.4.7 INERTIAL SMOOTHING REQUIREMENTS

Horizontal velocity accuracy of about 2 knots is needed for display and/or
control during approach and landing (Ref. 23), based on experience with inertial
velocity control systems developed by the MIT Draper Laboratory. Physically, this
corresponds to the uncertainty which can be tolerated in hover just prior to touchdown
to avoid a dangerous landing situation. Velocity aiding is also required by Omega and
LORAN navigators in order to provide the long averaging times necessary for them to
achieve their quoted accuracies.

The optimum combination of inertial velocity information with external posi-
tion data produces a hybrid navigator which provides both position and velocity infor-
mation of better quality than is available from either component system by itself. The
requirement for two knot velocity accuracy is at the output of the hybrid. Consequently,
the accuracy of the input velocity information can be of lower accuracy when a hybrid
combination is used.

2.5.4.8 RELIABILITY/REDUNDANCY REQUIREMENTS (CAT II, CAT III)

The requirements defined in Table 11 for CAT II and CAT III landings are the
same as those developed for CTOL aircraft. The proposed VTOL precision approach
categories in Table 6 were established so that the CTOL requirements could be applied
to VTO L.

2.5.4.9 UPDATE RATE REQUIREMENTS

The update requirements for cruise and the terminal area are the same as the
surveillance information rate used by the NAS and ARTS radar systems respectively.
There is ample experimental evidence that these rates are adequate for either surveil-
lance or pilotage. It should be emphasized that these rates apply only to position
information, and it is assumed that the helicopter has a velocity control system. To
elaborate this point, Figure 25 shows that position information feeds the guidance logic
through the outer loop while velocity information feeds the velocity control system
through the next inner loop. The innermost attitude loops are part of the attitude
stabilization system. In general, the bandwidth of the inner loops is wider than the
outer loops, which means that the response time of the inner loops is faster than that
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Figure 25. Helicopter Guidance and Control System.

of the outer loops. For larger helicopters the closed loop response of the attitude sta-

bilization system is limited to below 4 Hz. (Raising the loop gain above that corre-

sponding to 4 Hz causes coupling with the rotor dynamics.) The actual bandwidth is

about 1 Hz (6 rad/sec) in roll and slightly lower in pitch. Consequently, the attitude
stabilization system cannot respond faster than about 1/6 second at best, and the re-

quirement on velocity data rate does not need to exceed this value. It need not be

this fast when the onboard navigation system provides continuous airspeed, Doppler

or inertial velocity information.

The closed-loop bandwidth of the velocity control system is normally below
I rad/sec, which means that it cannot respond to commands faster than about 1 sec.
Consequently, there is no requirement to update the position more often. Although
position updates are provided once each second, knowledge of the vehicle's position

does not lag by one second since the velocity information is used to dead-reckon
between measurements. For example, the worst position error deterioration that can
occur in one second, with velocity information of 2-knot accuracy, is about 3 feet.
For comparison, the data rate required for an unstabilized helicopter without the
velocity loop closed is 5 scans/sec for helicopter use of the MLS (Ref. 26).

2.5.4.10 DATA LINK REQUIREMENTS

The data link requirement is based on providing sufficient information for a,
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traffic situation display in the cockpit. A complete traffic picture every four seconds
can be handled by an 8 kilobit/sec transmission rate (Ref. 27). This data rate can
be accommodated in a 25 kHz VHF channel. Information which could be contained
in the message includes aircraft coordinates, altitude, identification, ground speed
from ground tracking data, and sequencing and spacing commands. Map information
with approach and departure routes plus alphanumeric text for altimeter setting,
heliport conditions, etc. can also be included.

2.5.4.11 GROUND/AIR SYSTEM TRADEOFF

Self-contained airborne navigation systems such as inertial, Doppler and air
data provide velocity information, whereas ground radio systems such as MLS, multi-
lateration, Loran, Omega, and VOR/DME provide position information. Both position
and velocity information of the required accuracy are necessary for the VTOL navi-
gator. Position can be inferred from velocity measurements by integration, but the
errors build up with time. For example, the two knot accuracy requirement on velocity
integrates into a position error equal to the landing accuracy requirement (25 feet) in
less than 10 seconds. On the other hand, it is possible to estimate velocity from posi-
tion by differentiation; but this process introduces high frequency errors. To obtain a
velocity update with two knot accuracy every 1/4 second by differencing two position
measurements requires an accuracy of better than one foot. Consequently, it would
appear that both ground and air systems are desired; the information from both can be
combined optimally to form a hybrid system. The basic argument for a hybrid navigator
is the simultaneous need for horizontal velocity information of two knot accuracy along
with position accuracy of 25 feet. To obtain both position and velocity from a ground
system imposes a burdensome accuracy requirement and, furthermore, signal loss from
a ground system providing both would leave the helicopter in a compromising control
situation.

2.5.4.12 REQUIREMENTS FOR SIGNAL CONTINUITY AND FIDELITY,
INCLUDING PROXIMITY OF OBSTACLES

For takeoff and landing guidance, the system should meet the standards es-
tablished by ICAO for the applicable CAT II or CAT III landing category. This essen-
tially requires that there be no multipath problems. The enroute requirements depend
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on the specific navigation system and are discussed in the appropriate sections of

Section 3. Some of the candidate low frequency systems require study of the effect of

urban RF interference. Specifically, 60 and 400 Hz interference may be a problem with

Omega. Flight near power lines might cause signal loss of both Loran and Omega.

2.5.4.13 INERTIAL/RADIO-INERTIAL REQUIREMENTS

The requirement for an inertial hybrid is based on the need for velocity infor-

mation with an accuracy of about 2 knots for control during the approach and landing.

The accuracy requirement can be met by a low cost inertial package. Choice of inertial

over air data or Doppler is based on cost and reliability: Attitude information is already

needed for IFR flight and a computer is necessary to provide the area navigation com-

putations; the only additional cost is the accelerometers. Airspeed and heading infor-

mation could be satisfactory enroute but the information is poor at low airspeeds near

the ground. Inertial hybrid navigators should be updated at intervals less than one

tenth the Schuler period (< 8 min) because the error buildup during this interval is

very small in comparison to the long-term drift normally used as a figure of merit. As

explained in References 25 and 28, the inertial system can have long-term drift much

greater than 2 knots and still provide 2 knot velocity information when position updates

are available.
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SECTION 3

NAVIGATION SYSTEMS TECHNOLOGY

This section describes each of the leading navigation system candidates, and

compares their principal advantages/disadvantages for commercial VTOL operations.

Existing and planned radio navaids (VOR, DME, Omega, etc.) are discussed first,

followed by dead-reckoning (INS, Doppler), ground surveillance, area navigation

(RNAV), hybrid, traffic information, and collision avoidance systems.

3.1 RADIO NAVIGATION

Radio navigation systems require communication between the aircraft and one

or more surface stations. Because of this dependency, these systems have been slow in

implementation and have remained in use long after the advancing state of the art has

made them technologically obsolete. Improvements in a system can only be made if they

are compatible with the existing equipment. Table 12 shows the major systems that

have been developed over the years that either are in actual use by a substantial number

of aircraft or have been seriously proposed for VTOL operations.

3.1.1 DIRECTION FINDING

Direction finding (Ref. 24) represents the earliest use of radio for navigational

purposes. With the proper receiving equipment, the direction to any transmitter can

be found. The main drawback of direction finding is that elaborate receiving equip-

ment must be used to obtain the best accuracy.

Direction finders for aircraft navigation fall into two classes: ground-based

and airborne. Ground-based direction finders take bearings on airborne transmitters

and the pilot is then advised of his bearing from the ground station. Such stations can

afford the necessary complex equipment, but the operation is cumbersome, time-consuming,

and requires an airborne transmitter and communication link.

Airborne direction finders, which take bearings on ground transmitters, can

afford only the simplest of systems and must therefore tolerate relatively large errors.

However, even large bearing errors will not prevent an aircraft from homing to the

ground station, although not by the most direct route. Position of an aircraft is well

established when a direction finder indicates station passage. Primarily because of
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Table 12. Radio Navigation Systems.

System Frequency Remarks

Direction Finding Many Earliest radio navigation system;
still in great use as a backup system
due to its great flexibility.

Nondirectional 200:to 1700 kHz In worldwide use with airborne
Beacons LF/MF direction finders.

Marker Beacons 75 MHz Used as distance markers in instru-
ment-landing systems; previously
used as check points along the
airways.

VHF Omnidirectional 108 to 118 MHz International standard. Undergoing
Range (VOR) accuracy improvements and likely to

remain in service for several decades.
Distance-Measuring 960 to 1215 MHz International standard. Often

Equipment (DME) colocated with VOR to form a single-
site area-coverage system.

TACAN 960 to 1215 MHz Military short range omnibearing
and distance measuring system.

VORTAC Colocation of VOR and TACAN to
provide rho-theta navigation.

Decca 70 to 130 kHz Continuous-wave hyperbolic system;
used extensively in Europe by ships
and fishing fleets; some use by air-
craft, but Not an accepted standard.

Loran-A 2 MHz Long-range aid developed in World
War II; used by transoceanic aircraft;
U.S. chains being phased out in
favor of Loran-C.

Loran-C 100 kHz Partial successor to Loran-A; longer
range and improved accuracy
obtained by cycle-matching
techniques.

Loran-D 100 kHz Short-range tactical system com-
patible with Loran-C.

Omega 10 to 14 kHz Hyperbolic system with longer range
and less accuracy than Loran-C;
worldwide coverage when all 8
stations completed.
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Table 12. Radio Navigation Systems (Cont.)

System Frequency Remarks

VLF 10 to 20 kHz Hyperbolic systems which use both
Omega signals and carrier waves
of military VLF communication
facilities.

Differential Omega 10 to 14 kHz Proposed Omega system with im-
proved accuracy for terminal area
and landing navigation provided
by local corrections.

Instrument Landing 108.1 to 111.9 MHz International standard. Provides
System (ILS) (Local izer) precision vertical and horizontal

329.3 to 335.0 MHz guidance along a linear approach
(Glide Slope) path. Includes marker beacons.

Microwave Scanning C-Band & Ku-Band Proposed successor to ILS. Will
Beam Landing provide curvilinear approach paths
Guidance System and wider coverage than ILS.
(LGS)

Flarescan K -Band Family of advanced landing
u systems with extended azimuth

and elevation coverage; airborne
selectable glide slope and
sensitivity.

Tactical Landing 15.5 GHz Microwave ILS using simple time-
Approach Radar sharing transmitter and single
(TALAR) receiver; portable ground station.

Simplified Aircraft 9080 to 9160 MHz Airborne radar tracks beacon
ILS (SAILS) near desired touchdown point;

approach path and glide slope
selected by pilot.

Remote Area UHF Airborne interrogator-computer
.Terminal System tracks slant range and bearing to
(RATS) ground transponder; altitude,

azimuth and barometric glide
slope selectable by pilot.

Multilateration Many Multiple precision ranging mea-
surements between aircraft and
surveyed ground stations.
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the low cost of nondirectional beacons (see Section 3.1.2), direction finders are an

excellent backup aid to more precise systems; they have been valuable for helicopter

IFR over water approaches to ships, oil rigs, etc. (e.g. Refs. 7, 29).

3.1.2 NONDIRECTIONAL BEACONS

The widespread use of low- and medium-frequency airborne direction finders
by IFR aircraft prompted the installation of special ground stations whose sole functions
are to act as omnidirectional transmitters (Ref. 24). These beacons (also known as com-
pass locators) operate in the 200 to 1600 kHz bands, with output power ranging from
20 watts up to several kilowatts. Modern designs are entirely solid state.

In addition to the bearing information given to direction finders some distance
away, such beacons have another useful property; namely, a sharp reduction in signal
strength as the aircraft flies directly over the beacon, provides a specifically defined
fix. The accuracy of the fix produced by this "cone of silence" is somewhat dependent
on the airborne antenna; it is improved if the airborne-antenna pattern contains a null
in the downward direction.

All nondirectional beacons suffer from skywave contamination, groundwave
bends, and interference from thunderstorms or other stations. They have retained con-
siderable popularity because they are inexpensive, omnidirectional, and place responsi-
bility for accuracy entirely on the airborne receiver.

3.1.3 MARKER BEACONS

To provide better fixes along the airways, the development of marker beacons
was begun in the 19 3 0s (Ref.24). Although the marker beacon has been practically
phased out as an enroute aid by the implementation of area-coverage fixing systems, it
remains an essential element of the conventional instrument landing system. All marker
beacons operate at 75 MHz and radiate a narrow pattern upward from the ground, with
little horizontal strength, so that interference between beacons is negligible.

The transmitter is crystal-controlled, delivers up to 100 watts, and is tone
modulated, with its Morse code identity indicated by gaps in the tone. The airborne
receiver is a crystal-controlled superheterodyne, with its output providing an audio
and/or visual indication. Complete transistorization is common; most marker receivers
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are completely contained in their indicator-lamp housings, with a total weight of about

a pound.

The accuracy of the marker beacon depends on the altitude of the aircraft and

on the sensitivity of the receiver. However, it was the first aircraft navigation aid

to operate reliably - with no anomalies due to weather, the atmosphere or propagation,

and with a minimum of ground and airborne equipment.

3.1.4 VHF OMNIDIRECTIONAL RANGE (VOR)

The VOR system was developed during the 1930s and 1940s to replace the

low- and medium-frequency radio navigation system. When distance-measuring equip-

ment (DME) is added to VOR, a rho-theta area-coverage grid system is formed. This

is the standard International Civil Aviation Organization (ICAO) short-range naviga-

tion system; each VOR frequency is paired with a DME frequency, with the airborne

channel selector being common to both systems. The United States VORTAC system is

a VOR/DME system, which uses the DME function of the military TACAN system for

distance measurement.

The VOR operates in the 108-118 MHz band with channels spaced 100 kHz

apart, although the channel spacing will soon be reduced to 50 kHz. The ground sta-

tion provides bearing information by transmitting two signals: 1) a directional signal

that is rotated in azimuth at a rate of 30 revrolutions per second, and 2) a 30 Hz

omnidirectional signal. The airborne equipment comprises a horizontally-polarized

antenna and a crystal-controlled superheterodyne receiver. This receiver detects the

30 Hz amplitude modulation produced by the rotating pattern and compares it with

the 30 Hz frequency-modulated reference. The phase difference between these two

signals is a direct measure of the aircraft bearing from the ground station.

The airborne equipment has two common types of display: one uses a servo-

motor phase comparator to display the bearing directly; the bearing may be remoted by

selsyns to an autopilot. Another display uses a vertical left-right needle to show angular

deviation from a manually selected desired bearing. Most VOR radios also receive the

108 to 112 MHz instrument-landing-system localizer signals. Typical receivers weigh

from 5 to 20 pounds, exclusive of antenna.
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The major VOR error source is site error at the ground station; this

causes a bias in bearing which has a systemwide standard deviation of 1.3 degrees.

Instrument accuracy of better than 1 degree is typical of airline quality receivers.

Overall system accuracy at the aircraft may show an error of 40 and still be acceptable

for flight. Doppler VOR can reduce site errors to the order of a half degree at a typical

cost of $100,000 per transmitter. The combination of Doppler and precision VOR (to

reduce receiver errors) could probably improve total system accuracy to the order of

0.250; however, widespread implementation of precision VOR is unlikel y since airborne

sets must be modified, and the ability of a pilot to maintain a course is on the order of 10

3.1.5 DISTANCE-MEASURING EQUIPMENT, TACAN, AND VORTAC

Distance-measuring equipment (DME) is the international standard pulse-

ranging system for aircraft navigation. TACAN (Tactical Air Navigation) is a military

omnibearing and distance measurement system using the same pulses and frequencies for

the distance measurement function as the standard DME system. VORTAC is the coloca-

tion of VOR and TACAN ground equipment to provide rho-theta navigation to both civil

and military aircraft.

The airborne equipment includes an interrogator which transmits pairs of pulses

on one of 126 frequencies in the 960 to 1215 MHz band. Paired pulses are used to

reduce interference from other users. The ground beacon (transponder) receives these

pulses and, after a 50- sec delay, retransmits them on a frequency 63 MHz below or
above the airborne transmitting frequency. The airborne receiver compares the elapsed

time between transmission and reception, subtracts the 50-usec delay, and displays the
result on a meter calibrated in nautical miles.

The peak power of the transponder is in the range of 1 to 20 kilowatts. Each

beacon is designed to handle at least 50 aircraft simultaneously, with 100 being a more

typical number. Thus, up to 126 separate beacons are possible in any line-of-sight

geographical area, with each handling 100 or more aircraft. Since each beacon's duty

cycle is still only 2 percent under these conditions, sufficient capability exists to expand
the system to handle much heavier traffic.

Typical airborne equipments range from 10 Ib for the simplest sets to about 30

Ib for the more accurate long-range sets. All circuits are typically solid state, with
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the exception of the pulsed transmitter-amplifier chain. The peak pulse power varies

among airborne transmitters from 50 watts to 2 kilowatts. Displays range from calibrated

voltmeters to servo-driven digital number wheels. Accuracy is limited by the type of

readout, stability of beacon delay, accuracy of pulse rise times, etc. The ICAO re-

quires an overall system accuracy of 0.5 mile or 3 percent, whichever is greater.

For reasonable distances from the VORTAC station, the major position uncer-

tainty is due to the VOR bearing error. For this reason Dual-DME has been suggested as

a more accurate utilization of the VORTAC system. One problem with this approach is

that a DME beacon saturates when many more than 100 aircraft interrogate it for dis-

tance information. Also, for terminal operations at low altitude, two DME stations

may not be within line-of-sight. Finally, the Dual-DME position is ambiguous, and

must be resolved by dead reckoning, a third DME, a VOR bearing or other position fix.

3.1.6 DECCA

Decca is a hyperbolic navigation system developed by the British during World

War II. It is extensively used by shipping in northwestern Europe, and by offshore

helicopter services in the North Sea. As described in Section 2, Decca was formerly

used for IFR helicopter operations by New York Airways. Decca is unique in that most

chains have been privately owned; it is not an internationally standardized system.

A Decca navigation measures the differential arrival times of signals trans-

mitted from two or more synchronized ground stations. Most Decca chains comprise a

master station and three slave stations around 40 miles apart. Each station transmits a

synchronized continuous-wave frequency (70-130 kHz) that bears a fixed relationship to

the frequencies of the other stations (Fig. 26). Phase comparison therefore produces a

family of hyperbolic lines of position where the phases are equal. The spaces between

these isophase lines are called lanes. The receiver multiplies the incoming frequencies

before phase comparison, resulting in a lane width on the order of 250 yards along the

baseline. The intersection of two lines of position provides a fix.

Because of the low frequency, Decca is not limited by line-of-sight trans-

mission and is therefore satisfactory for operations behind buildings and natural obstruc-

tions. However, Decca is range limited by skywave contamination to distances of about

200 nautical miles. Position accuracy (2a) varies from below 100 yards when between
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Figure 26. Typical Decca Chain.

stations on a summer day (where the geometry is good and there is no sky wave), to

several nautical miles when 200 miles away from the master station during a winter

night (where geometry is poor and sky-wave contamination is present). Although Decca

is a very attractive system from a technical viewpoint, its private ownership by a foreign

company makes its adoption unlikely for widespread use in the United States.

3.1.7 LORAN-A

Loran-A is a hyperbolic navigation system which uses pulses rather than con-
tinuous waves to avoid sky-wave contamination. A Loran chain normally comprises a
master and two slaves about 200 miles distant; it is usually installed along a coastline
to serve vehicles on or over the ocean. The United States is currently planning to
decommission all Loran-A chains in favor of Loran-C.

The master station transmits pulses on a carrier frequency from 1750-1950 kHz.
These pulses are received by each slave and rebroadcast after a fixed delay. The re-
ceiver measures the differential delay between reception of the master pulse and a
slave pulse; this time difference defines a hyperbolic line of position, with the master
and slave as foci. The intersection of two such lines, one from each slave, provides a
position fix. The typical readout is by oscilloscope observation of the time difference,
followed by manual translation to a chart on which the hyperbolic lines are preprinted.

The range of reception of Loran-A signals varies from about 500 miles at equa-
toral latitudes to about 800 miles in the arctic. The accuracy of a line of position
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depends on the geometry. Along the base line between stations, it is on the order of

1000 ft; at extreme range and at right angles:to the base line, it is on the order of half

a mile. The accuracy of a fix further depends on the intersection angle of the hyper-

bolic lines.

3.1.8 LORAN-C

Loran-C operates in the 90-110 kHz frequency band, has a longer range than

Loran-A, and achieves an order of magnitude improvement in accuracy by using phase

information in addition to counting pulses. The master and slave stations are separated

by 600 to 800 miles. A system of 40-50 stations would be required to give world-wide

coverage with Loran-C.

The transmitter operates at a fixed frequency of 100 kHz. Each pulse is de-

signed to build up and decay slowly to keep 99 percent of the radiated energy within

the assigned frequency band. Skywave contamination becomes significant about 30

4sec or 3 cycles after ,the beginning of the pulse so only the first three cycles are

generally used for navigation. The receiver must have a very high effective selec-

tivity because the first three cycles may be contaminated by atmospheric noise and

other interference. Selectivity is obtained by tracking the received signal with a

servo loop that has a long characteristic response time. For use in aircraft the re-

ceiver must have velocity information to keep the servo loop locked onto the signal.

Modern Loran-C receivers using integrated circuits feature automatic search,

a weight of 25 Ib, and a power consumption of 200 watts. Readout from the receiver

itself is in time differences, requiring the navigator to transfer these to the correspond-

ing hyperbolic lines on a chart. Digital computers are available which (at the price of

doubling the size, weight, and cost) provide readout in latitude and longitude, to-

gether with left-right steering information and distance along track.

Atmospheric noise at the receiver is the major source of error in the Loran-C

system. The accuracy depends on the signal-to-noise ratio which varies widely with

range, and on the response time of the servo tracking loop. For averaging times of

100 seconds at medium range, an error of 300 feet is typical. The instantaneous ac-

curacy could change by a factor of three in either direction depending upon actual

range.
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3.1.9 LORAN-D

This tactical military system is intended for short-range service at low alti-
tudes, where line-of-sight systems do not provide adequate coverage. It is based on,
and is compatible with Loran-C. The major differences are the following:

* The base line between master and slaves is reduced.
* The radiated power is substantially less, due to smaller transmitters

and lower antenna masts.
* Partly to compensate for the lower power, more pulses are

radiated in each group; they are sampled at their peaks, rather
than on the leading edge.

Airborne equipment is otherwise identical to that of Loran-C.

3.1.10 OMEGA

Omega is a very low frequency (VLF) hyperbolic navigation system capable
of covering the entire globe with only eight ground stations. Although Omega was
developed primarily for marine applications, the system has many desirable features
for aircraft navigation. Four Omega stations, covering most of the western hemisphere,
are in operation at North Dakota, Trinidad, Norway, and Hawaii. By 1976, addi-
tional stations are to become operational in Japan, Argentina, Tasmania and Reunion
Island. The Trinidad station is to be replaced by a new facility in Liberia.

The VLF Omega signals, in the range of 10 to 14 kHz, do not penetrate the
ionosphere and thus travel for exceptionally long distances. Eventually all Omega
stations will use three basic frequencies: 10.2 kHz, 11.3 kHz, and 13.6 kHz. The
number of frequencies is intended to reduce the ambiguity problem. In a hyperbolic
system using phase comparison at 10.2 kHz, isophase lines, or lanes, are formed about
every 8 nm. A two-frequency receiver, using also the 13.6 kHz lines of position, can
provide lanes 24 miles apart by using the beat between 10.2 and 13.6 kHz (3.4 kHz).
A three-frequency receiver improves this ambiguity to 72 miles, using the beat between
10.2 and 11.33 kHz (1.13 kHz).

The phase of the VLF signals is remarkably stable, but diurnal variation in
the velocity of propagation requires compensation Te pr iry Omeg sysem errors

are due to inaccuracies in the signals measured by the aircraft. An extensive list and
description of the Omega error sources, the resulting error magnitudes, and their general
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time-varying character has been compiled by Scott (Ref. 30). Propagation variations

are a function of specific path, time of day, and time of year. Sky-wave correction

models which can reduce the RMS error magnitude to less than one nm,.can be applied

automatically, using a small computer at the receiver.

Another major source of error is broad-band atmospheric noise at the receiver.

As is the case with Loran-C, the long integration times needed to cope with poor signal-

to-noise ratios make implementation difficult in fast aircraft. An inertial sensor may

be employed to provide short-term corrections, or this may be provided by inputs from

the aircraft's heading and Doppler navigator or airspeed.

After an equivalent amount of development, airborne Omega hardware is

expected to be about the same order of size, weight, and cost as a Loran-C receiver.

3.1.11 DIFFERENTIAL OMEGA

This is a proposed technique for reducing the affect of Omega propagation

errors. Ground stations at known geographic locations would measure the Omega pro-

pagation error and broadcast a correction to local aircraft, in the same manner as
local barometric pressure is provided for altimeter corrections. The error due to

propagation variation would be reduced to the difference in the error at the aircraft

and at the reporting station, which is on the order of a half mile at a distance of 200

miles. However, an additional error might exist if the Omega correction was not

current, particularly around sunrise or sunset. This correction could improve the

absolute Omega accuracy from about 10,000 feet to approximately 1000 feet.

3.1.12 INSTRUMENT LANDING SYSTEM (ILS)

The Instrument Landing System (ILS) consists of a glide slope beam, a localizer

beam, monitor beacons and approach lights to. guide an aircraft during final approach to
a particular runway. The glide slope provides UHF vertical steering signals, while the
localizer provides VHF lateral steering signals; the intersection of the two beams is the

straight-line glide path. Two or three marker beacons provide checks of position at
approximately 4.5 miles from the runway, at the 200-ft altitude (CTOL Category I)

decision height, and at the 100-ft altitude (CTOL Category II) decision height.

The glide slope antenna establishes a radiation pattern in space from which
the airborne receiver derives a signal proportional to the vertical displacement from
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the glide path. This signal drives a crosspointer needle or flight director in the aircraft.

The glide path is typically sloped at 30 and intercepts the runway approximately 1000

ft beyond the threshold. The localizer signal is proportional to lateral displacement

from the vertical plane through the runway center line. This signal drives the left-

right crosspointer needle or flight director.

The ILS has been used for 2-1/2 decades and is standardized by the ICAO.

Its major limitations are caused by beam bends due to reflections from buildings, terrain,

airborne aircraft, taxiing aircraft, and ground vehicles; and due to nearby radio-noise

sources. The near-field character of the glide slope renders it unsuitable for landing.

3.1.13 MICROWAVE LANDING SYSTEM (MLS)

Microwave landing systems are less susceptible to spurious reflections and,

apparently, are destined to replace the current VHF ILS. Prototypes have been under

development and test, but the final data signal format and performance parameters are

still being resolved. The scanning beam landing guidance system (LGS) proposed by

the RTCA (Ref. 26) is a possible contender for the international standard which is

scheduled to be chosen by ICAO in 1975.

The RTCA requirements stipulate that the guidance system should not impose

limitations on any of the aircraft using it. Recognition was given to the increased

size and speed of wide-body jets and supersonic aircraft, the expected growing role of

V/STOL aircraft, and the rapidly increasing population of general aviation aircraft.

The airborne unit obtains precision azimuth, elevation, and range data referenced to

the runway, which are suitable for display to the pilot or for input to the flight control

system. Provision is made for future implementation of highly automated aircraft ap-

proach and landing with maximum system integrity.

The horizontal and vertical signal coverages for several postulated LGS con-

figurations are shown in Figure 27. These configurations, defined in Table 13, provide

for various performance capabilities, categories of weather minimums, and aircraft

approach profiles. The simplest system provides limited straight approach paths, while

higher capability systems provide for multiple curved approach courses and curved glide

paths. Aithough the upper coverage angle selected is 15 degrees, the capability of

accommodating higher approach angles exists for possible future requirements.
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o Table 13. Microwave Landing System Configuration Data.a

n Configuration B D E F G I K
M

a' Guidance Coverage

Azimuth Straight Straight Straight Straight Straight Curved Curved
Elevation No Straight Select Straight Select Curved Curved
Range Basic DME Basic DME Basic DME Basic DME Precise DME Precise DME Precise DME

n Missed Approach No No No No No Yes Yes
Facility Performance* CAT I CAT I CAT I CAT II CAT II CAT Ill CAT III

o (CTOL Categories)

Minimum Guidance 150 ft 150 ft 150 ft 50 ft 50 ft 0 0m Altitude (AGL)

S ' Coverage

oo Elevation NA 80 200 80 200 200 200
Azimuth + 200 + 200 + 200 + 200 + 200 + 400 + 600
Missed Approach - - - - -+ 400 + 400

Accuracy* (noise)
Z Elevation (20) NA 7 ft 7 ft 1.4 ft 1.4 ft 1.4 ft 1.4 ft

Azimuth (20) 26 ft 26 ft 26 ft 11 ft 11 ft 9 ft 9 ft
Range (a) 300 ft 300 ft 100 ft 100 ft 20 ft 20 ft 20 ft

Data Rate (Max) 2.5 Hz 5 Hz 5 Hz 5 Hz 5 Hz 10 Hz 10 Hz

0 Runway Length 7000 ft 12,000 ft 14,000 ft
0

*Accuracy refers to the decision height for CAT I and II Configurations and to the runway threshold for
Configurations I and K.



Horizontal coverage is required to a range of 20 nautical miles with a desired range
of 30 nautical miles.

Angular position of an aircraft is measured by reference to ground-generated
fan beams that scan across the coverage sector in both azimuth and elevation. An air-
borne unit extracts the modulated angle data that corresponds to the central angle of
the line-of-sight from the ground antenna to the aircraft. Range measurements are made
by airborne interrogation of a ground transponder. The signal format provides for trans-
mitting auxiliary data to an aircraft, including runway identity, equipment status,
weather data, siting constants, and other data. The airborne unit computes position
data or flight path deviation data suitable for inputs to the flight control system and/or
display to the pilot.

Several industry teams within the United States are pursuing diverse technical
approaches in the FAA compeition for the technique which the United States will submit
to ICAO for the international standard (Refs. 31, 32). Moreover, a number of .
overseas programs also exhibit a variety of approaches (Ref. 33). Australia is develop-
ing an all C-band system called Interscan, which uses an electronically-scanned planar-
beam antenna. It provides a separate DME in C-band which is independent of the
azimuth and elevation subsystems. Ku band was ruled out because of its vulnerability
to heavy rainfall. France is developing a ground-derived transponder system with an
L-band discrete address uplink, which combines operation of an MLS with an air traffic
control data link. The airborne interrogation is subjected to angular measurement by
ground sensors to determine position. The French viewpoint is that the operation of an
MLS in high density traffic areas cannot be efficient without an air traffic control data
link, both of which their system provides. Expanded versions could service multiple
runways or helicopter landing pads. The British have developed an air-derived system
which uses Doppler scanning, while the West Germans have a system which uses the
existing DME airborne equipment in the aircraft. The ground station of the latter
system measures azimuth and elevation with special antenna arrays and retransmits the
data back to the aircraft along with the normal DME reply pulses. The system is com-
patible with standard DME or TACAN airborne equipment, and has the unusual advan-
tage of providing navigation for enroute, approach and landing.
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In addition to those systems proposed for future adoption, several existing

microwave systems have been developed for special applications.

Flarescan is a family of microwave landing systems (Ref. 34).which use a

narrow K -band beam that sweeps through extended azimuth and elevation angles with

a varying pulse spacing to convey angular information. Shorscan and A-Scan are

portable versions of this complete system employing small scanning antennas stationed

on the ground. The aircraft receiver provides selectable glide angle and glide sensi-

tivity, and may include a DME module for direct readout of range and range rate.

Azimuth coverage of the system is + 150 with elevation coverage up to 250

TALAR is a microwave ILS which has potential application to VTOL operations

because of its simplicity and flexibility (Ref. 35). The system comprises a single time-

sharing transmitter generating localizer and glide slope beams to a single receiver in

the aircraft. The output of the receiver operates conventional ILS instruments including

flight director and auto-approach couplers.

The Landing Aid System (LAS) operates in the C-band with four amplitude-

modulated beams, two each for glide slope and localizer guidance (Ref. 36). Fly-up,

fly-down commands are generated by beam modulation. Both glide slope and localizer

information are transmitted from a single unit. Onboard the aircraft, the small LAS

horn antenna receives the microwave signal, which the airborne electronics unit con-

verts to standard VHF/UHF ILS frequency and format. These signals are then sent to the

existing VHF/UHF receivers and displays. LAS has an 18 nm minimum range with 300

azimuth coverage and 60 elevation coverage. The glide slope coverage is adjustable

from 2.50 to 70. The airborne equipment weighs 18 lb and consumes 15 watts of power.

3.1.14 SIMPLIFIED AIRCRAFT INSTRUMENT LANDING SYSTEM (SAILS)

The SAILS system (Ref. 37) employs a small, lightweight, helicopter-borne

radar which tracks a beacon located at or near the desired touchdown point. The re-

sultant position information is used to drive conventional cross pointer indicators as

well as to generate range and range rate. Provision is made to offset the touchdown

point up to 2 miles horizontally and 1000 ft vertically from the beacon position. The

approach path, glide slope, and offsets are all selected by the pilot; all measurements

and computations are performed in the aircraft. SAILS is particularly adapted to steep
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descent approaches since the glide slope is not determined by a ground-based beam

configuration, but rather is selected by the pilot. This affords a capability of inter-

mixed descent angles to the same terminal point, and provides the possibility of a

variable descent angle programmed according to aircraft type.

The airborne equipment weight, exclusive of computer servo unit, displays and

controls, is about 25 lb and the ground unit weighs 15 Ib. The latter requires no special

installation or alignment, hence is adapted to operation in remote areas. Since SAILS

is essentially an angular system, the accuracy is a function of geometry, but improves as

the touchdown point is approached. In fair weather the range is about 40 miles, whereas

in very heavy rainfall it diminishes to about 10 miles.

3.1.15 REMOTE AREA TERMINAL SYSTEM (RATS)

RATS is a simple CW ranging and communication system operating within the

UHF communications band (Ref. 38). An interrogator-computer in the aircraft con-

tinuously tracks a transponder on the ground, developing an accurate, continuous

measure of slant range and bearing to the beacon. The computer determines height

above the touchdown point from the manually inserted barometric pressure for that

location. The height above touchdown is then compared with the measured slant range

to derive a vertical angle to the beacon. The pilot selects the descent angle, and the

angular deviation off that path is displayed on the glide slope meter in conventional

form. Like SAILS, RATS provides 360-degree azimuth glide slope information, allow-

ing the pilot the flexibility of choosing almost any direction and approach angle to the

beacon.

3.1.16 MULTILATERATION

This is a proposed navigation technique which uses range measurements from

three or more ground stations to determine position. The multilateration system proposed

by Weiss (Ref. 39) uses a network of ground stations synchronized by atomic clocks.

The ground stations transmit pulses in the GHz range, and position is determined by

measuring the difference in time-of-arrival of the pulses from several stations. The

aircraft must be within line-of-sight to at least three ground stations to obtain a position

fix.
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An alternate approach, which appears capable of providing high-precision

velocity and position signals, along with near-hemispheric coverage, is being developed

and evaluated by LaRC. The concept uses a cooperative FM/CW Doppler multilatera-

tion technique. A system design and analysis is being performed, and signal distribu-

tion, modulation and data processing techniques, and minimum time-delay-variation

transponder designs will be examined. An experimental system will then be built and

flight tested to evaluate different modulation formats, multiplexing techniques, station

configurations, and data processing techniques.

The development of a dedicated multilateration system for rotorcraft terminal

navigation is a controversial subject, both technically and politically. The advantages

and disadvantages of the multilateration system are summarized below.

Advantages

* The use of ground computation and a data link to the aircraft
provides landing guidance with a minimum of airborne equipment.

* Lateral guidance can be provided over the area of a heliport and
serve several landing pads simultaneously.

Disadvantages

* The accuracy of vertical guidance suffers drastically from geometric
dilution. For any station pair, the accuracy of a measurement is
proportional to the sine of half the angle between the lines-of-sight
to the two stations; the most accurate measurement is obtained on
the baseline between the two stations. The sensitive direction
for any measurement lies in the plane determined by the helicop-
ter and the two stations. Outside the station cluster on a 150
glide path, the vertical accuracy is poor because the angle
between the lines-of-sight is small. Near touchdown the mea-
surements are insensitive to vertical position because the aircraft
and all the stations lie approximately in a single horizontal plane.

* Multilateration systems were considered as the ILS replacement
by the RTCA (Ref. 26) and rejected. The primary reason was the
difficulty of solving the multipath problem. Difficult sites were
expected to require special preparation and antenna tailoring
in addition to very complicated multipath rejection schemes.

* Complex coordinate conversion and computation is required for
multiple approach paths or non-standard baselines. Station
coordinates must be transmitted to the aircraft if the computa-
tions are to be performed on board.
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* The location of multiple ground facilities at precise locations
would be difficult to accomplish in many applications such as
in city centers, on high buildings, or over water.

* For operational utility, it is essential that a landing system be
universally adopted by all users. The major impediment to the
acceptance of a universal system is not so much technical as it
is political; i.e., worldwide agreement on a single system. For
example, the final decision by ICAO on an MLS standard will
come in 1976 from proposals now being submitted by participating
countries. The U.S. entry, which has evolved starting with the
formation of RTCA SC-117 in 1967, is committed to the use of a
microwave sccnning beam. Efforts to promote the use of a
special-purpose system can be counter-productive. There is a
real danger that such efforts could ultimately block the overall
goal of achieving a universal system.

3.2 GROUND-BASED RADAR

Ground-based radar is primarily a surveillance system as opposed to a naviga-

tion system, and unlike the radio navaids, radar does not require special equipment

onboard the aircraft. However, radar vectoring from the ground is frequently used for

navigation in terminal areas, and surveillance radar approaches are available at major

airports.

3.2.1 PRIMARY RADAR

Primary radar comprises a powerful transmitter and a directional antenna that

"illuminates" a given target, and a sensitive receiver that detects energy reflected by

the target. By measuring the elapsed time between transmission and reception, the

distance to the target is determined, whereas the direction of the target is obtained

by means of the antenna-beam directivity. A cathode-ray-tube displays the target as

a bright spot, whose distance and azimuth are proportional to the aircraft; true position

with respect to the antenna. By using a transparent overlay map, the target's position

with respect to known geographical features may be observed.

The outstanding advantage of primary radar is its ability to detect a non-

cooperating target. For best results, the target must be located in an environment

that has much less reflectivity than the target itself; otherwise, the target is obscured

by reflections from its surroundings (clutter). Radar is particularly effective in dis-

tinguishing aircraft against a background of sky. A device for improving target detec-

tion is the moving-target indicator, which discriminates against fixed clutter (due to
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terrain, buildings, mountains, etc.) and responds.only to targets that have more than

a certain radial velocity with respect to the radar site.

Since primary radar involves transmission over a round-trip distance, its range
is proportional to the fourth root of transmitter power. High transmitter power - on the

order of hundreds of kilowatts - is therefore necessary for all but the shortest ranges

and largest targets.

3.2.2 AIR TRAFFIC CONTROL RADAR BEACON SYSTEM (ATCRBS)

Where targets are cooperative, secondary radar can be used. In the ATCRBS,

the target carries an amplifying device or transponder, thereby greatly reducing power

requirements at the radar transmitter. Moreover, transmission and reception can then
be at different frequencies, thus eliminating clutter, and can use various modulation

schemes for target identification.

The present air traffic control system uses secondary radar as its primary source

of aircraft position, identity and altitude information. A ground interrogator transmits
a pair of time-coded pulses at 1030 MHz from a highly directional antenna, to elicit
a coded reply from each airborne transponder. The reply is radiated nondirectionally
at 1090 MHz (up to 16 bits). It is received by the ground station (interrogator-

receiver), processed, and transmitted to the controller's display. The transponder in
the aircraft consists of a receiver/transmitter and a coder/decoder. Any detected
pulse pair that has the correct spacing will cause the transponder to reply with one of
the 4096 possible reply codes containing the appropriate data (i.e., identity or
altitude).

The principal error in the ATCRBS range accuracy is the variation in the
transponder reply delay; the total range error is within 1/16 nautical mile. The
limiting factor in resolving targets involves the detection and separation of overlapped
replies, which limits range resolution to about 400 ft. The standard deviation for
azimuth accuracy is 0.25 degree for terminal radars with a scan rate of 20 rpm The
azimuth resolution is dependent upon the antenna beamwidth, receiver sensitivity,
power outputs, and system processing technique. The beamwidth of 4 degrees allows
resolution of two targets separated by about 5 degrees.

The major problem with ATCRBS is overinterrogation. All interrogators operate
on the same frequency and all transponders reply on a common frequency. As a result,
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all transponders in a given reception area (which may be hundreds of miles in diameter)

reply to all interrogations picked up by their receivers. In a high-density terminal

area, there may be as many as 60 radar interrogators, each querying a specific airplane

but receiving replies from every transponder within line-of-sight. The result is a high

level of interference, both at the transponders and at the interrogator receivers on the

ground, causing lost or garbled replies.

3.2.3 DISCRETE ADDRESS BEACON SYSTEM (DABS)

In 1969, the Department of Transportation Air Traffic Control Advisory

Committee (Ref. 40) foresaw the need for discretely-addressable airborne transponders

for improved quality and reliability of surveillance data. Additionally, they recog-

nized the opportunity of incorporating a digital data-link for the transfer of data com-

munications and control information between the aircraft and the ground. From these

recommendations emerged the Discrete Address Beacon System (DABS).

DABS is essentially a considerably advanced ATCRBS; the primary difference

is that the airborne transponder will be programmed to recognize its own specially-

assigned (discrete) call number. It will reply only when the querying pulses contain

that special signal, ignoring the interrogations beamed to other aircraft. Its reply

train will include a "signature," so that controllers will know that the proper trans-

ponder has responded.

Being developed as part of the ATCRBS improvement program is a new type

of antenna called Electronic Scan or E-Scan. This is a stationary circular array of a

large number of columns of dipole antennas, that, by means of electronic phasing and

switching can form a beam pointing in any given direction. For updating azimuth

information, E-Scan could eliminate the need for waiting until the rotating antenna

completes a sweep. From computer-stored information that provided the last known

azimuth of any tracked airplane, the E-Scan could be properly pointed toward the

area of an aircraft target for instant updating.

Since DABS addresses individual aircraft, it offers an additional potential

for data communications and control purposes by means of the data link to be incor-

porated in the system. DABS will have data communications capacity beyond that

required for identity/altitude queries; this capacity will be adequate for most simple
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control instructions that would permit quicker corrective action than voice transmission.
In this sense, DABS offers a new dimension of utility as a ground-based collision-

avoidance aid to a concept known as Intermittent Positive Control. Similarly, the data
link could also be used to update the onboard navigation system.

Two interesting DABS modifications have recently been proposed. "Synchro-
DABS" would use tracking information on the ground to time individual interrogations
such that aircraft replys would always start at universally synchronized time slots.
Consequently, by listening to other transponder replys, an aircraft could easily mea-
sure the range to all others in the vicinity. "Astro-DABS" would cause the ground
interrogation to go via satellite and thereby increase the coverage.

The details of DABS are still being established but the potential exists for
using it as a form of accurate navigation and surveillance. The data link capability
means that ground and air derived information can be easily exchanged. The accuracy
goal of DABS is 200 feet.

3.3 DEAD-RECKONING SYSTEMS

Dead-reckoning navigation systems extrapolate a "known" position to a
future time by measuring velocity and direction of flight. The simplest dead-reckoning
system uses the airspeed indicator, magnetic compass and a wind estimate. Doppler
radar and inertial navigation are much more accurate forms of dead-reckoning navigation.

Dead-reckoning can be characterized as the basis of all navigation, with
position-fixing constituting a method of updating it. Actually, dead-reckoning and
position-fixing complement one another, each providing an independent means of
checking the accuracy of the other. Where position-fixing is intermittent, with rela-
tively long intervals between fixes, dead-reckoning is appropriately considered the
primary method. If fixes are available continuously or at very short intervals, the
primary method might then be either dead-reckoning, position-fixing or an integrated
output from both.

3.3.1 DOPPLER RADAR

A Doppler radar navigator is a self-contained dead-reckoning system that
obtains the desired navigation information through measurement of aircraft velocity
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and direction by means of a Doppler radar, and directional sensor, respectively. A

computer combines these data, and integrates the velocity into two components of

distance traveled from the point of departure. The present position information is com-
pared with destination coordinates to provide quantities such as bearing to destination,
distance to destination, track-angle error, and cross-course deviation. These can be
fed to suitable displays and the autopilot.

The Doppler navigator has the following advantages over other methods of
navigation:

* Continuous velocity and position with respect to the ground.
* Completely self-contained. (No ground stations required.)
* Average-velocity information, the quantity used for navigational

position determination, is extremely accurate.
* All-weather operation.

* Navigation is possible over oceans and over underdeveloped areas.
* International agreements are not required, since ground equipment

is not needed.

* Doppler radars (unlike mapping radars) are amenable to high-
reliability all-solid-state design because of their low radiated
power.

* No preflight alignment or warmup needed.

The disadvantages of the Doppler navigator are:

* Dependent for azimuth information on an external directional
sensor (e.g. gyromagnetic compass, heading-attitude platform,
or astrocompass).

* Internal or external vertical reference information is required for
conversion of velocity information into earth coordinates.

* Position information degrades linearly with time.
* Instantaneous velocity information is not as accurate as the

average velocity.

The total position error of a Doppler navigation system is determined by the
errors of the three major components of the system: the Doppler radar, the heading
reference, and the computer. The error contributed by the heading reference has a
major effect on the overall system error; a 10 error in heading represents a 1.75 percent
cross-track position error. The computer that combines the Doppler-radar velocity
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information with the heading information and integrates the velocity into elapsed dis-

tance also contributes an error to the position determination. When analog computation

is used, this error may be appreciable. The principal uncertainties in the Doppler

radar data are due to a scale factor error in the groundspeed reading, a bias in the

antenna boresight alignment relative to the aircraft, and the effects of over-water

errors. A typical error budget for a high-performance Doppler radar is shown in

Table 14(Ref. 41). Based on current accuracy characteristics of the three components,

a total Doppler navigation system position error of less than 0.25 percent (1 a) of dis-

tance traveled is within the present state of the art. In view of the relatively low

Table 14. Typical Error Budget of High Performance Doppler Radar.

Error Type Value Correlation Time

Fluctuation (After 10 nm) Random 0.073 % 0.25 - 1 sec

Beam Direction (Antenna Bias & Random 0.065 % 1 sec - a
and Radome)

Sea Bias (Residual After Bias 0.035 % m
Lobe-Switching)

Altitude Hole (Residual Bias & Random 0.02 % 1 sec - a
After Lobe-Switching
& Modulation Wobbling)

Readout (Data Conversion) Bias 0.02 % oo

Installation and Calibra- Bias 0.03 % 0
tion

Frequency Tracker Bias 0.1 kt o

Total Ground Speed Error 0.11 % + 0.1 kt (la)

*'r - 1 r'. _!£ . A __1_ .... /1 x
IVIU I LIIII PmiuiI LIIUVI U Ui. 111111 \IU/
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weight of modern solid-state Doppler navigators and the capability for measuring

negative speed, their use in VTOL aircraft will steadily increase, particularly for

offshore and remote area operations. Vertical velocity and absolute altitude will be

extracted in future systems. A typical Doppler radar of the future will have a total

weight of less than 10 Ib and probably will cost less than $10,000.

3.3.2 INERTIAL NAVIGATION SYSTEM (INS)

An inertial navigation system (INS) is a completely self-contained dead-

reckoning device. Once the initial position is known by the navigation computer,

accelerometers mounted on an inertial platform determine the movement of the aircraft

from this position. The inertial platform is usually kept level with respect to the local

surface of the earth by suspension in a set of supporting gimbals. The gimbal angles

are changed to compensate for the rotational movement of the aircraft over the surface

of the rotating earth. Any angular motions of the platform are detected by gyroscopes,

which generate torquing signals to a servo system to keep the platform locally level.

Compared with other methods of navigation, an INS has the following

advantages:

* Indications of position and velocity are instantaneous and
continuous.

* Completely self-contained since it is based on measurements of
acceleration made within the vehicle itself.

* Navigation information is obtainable at all latitudes, in all
weather, and without the need for ground stations.

* Navigation information is substantially independent of vehicle
maneuvers (in contrast to, for example, Loran and Doppler
systems).

* Position, groundspeed, :azimuth, and vertical outputs are pro-
vided; it is the most accurate means of measuring azimuth and
vertical on a moving vehicle.

The disadvantages of the inertial system are:

* Position-and-velocity information degrades with time, whether
the vehicle is moving or stationary.

Equipment is expensive and relatively difficult to maintain and
service.
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* Initial alignment is necessary. Alignment is simple on a
stationary vehicle at moderate latitudes, but it degrades at
latitudes greater than 750 and on moving vehicles.

When the inertial system is turned on, it must be aligned so that the com-
puter knows the initial position and groundpseed of the aircraft, and so that the stable
platform has the correct initial orientation relative to the earth. The platform is
typically aligned in such a way that its accelerometer input axes are horizontal, often
with one of them pointed north. As the aircraft maneuvers the accelerometers measure
changes in velocity, and the computer records the motion. The navigation errors
which result from using inertial systems are due to the following primary sources:

* Initial misalignment of the inertial platform.
* Initial heading and position error of the aircraft.
* Gyro torquing motor scale factor and bias.
* Gyro drift.

* Accelerometer bias and scale factor error.
* Gyro and accelerometer misalignment on the platform.
* Velocity quantizer error.
* Random noise.

The most severe limit on position measurement is the knowledge of the Earth's gravity
field in the region of operation, since accelerometers cannot distinguish between
kinematic acceleration and gravity. Angular errors in the measurement of inertial
space are primarily limited by the precession of the equinoxes and the migration of
the earth's pole; these errors are 5 x 10- 5 deg/hr, equivalent to 100 ft. Measure-
ments of azimuth and vertical are typically limited by the angular returnability of
the shock mounts and by the flexure of the vehicle; these typically range from 2
minutes of arc to 0.50.

Three inertial navigation systems currently in use in commercial aircraft
are the Litton LTN-51, the Delco Electronics Carousel IV, and the Collins INS-
61B. Typical systems weigh 50 to 75 Ib (excluding cables), of which 20 lb is for
the platform. The steady-state power consumption is approximately 200 watts.
Over.ll system accuracy siut update is the order of one nautical mile per

hour.
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For use in a hybrid navigation system in which the INS outputs are periodi-

cally updated, the accuracy of the INS may be relaxed. The severity of the require-

ments for the inertial system varies with the quality and rate of the update information.

For the landing phase, for example, a 2 to 3 knot inertial system is required for updates

on the order of every 2 seconds. The initial costs of an INS of this quality are normally

in the range of $75K to $150K, with high maintenance and upkeep costs and undesirably

short lifetime. Current systems are gimballed platforms, leading to a highly complex

system. NASA Ames Research Center, as a part of the STOL operating systems program

(Ref. 42), will be flight testing a strapdown INS which uses six floated rate-integrating

gyros and six accelerometers, with a digital computer to mathematically replace the

platform gimbals. Ground tests of this system have indicated excellent performance,

and it is expected that flight tests will verify these data. However, the cost will still

be nearly an order of magnitude higher than a VTOL operator could afford.

New gyro technology is being developed which will provide sensors suitable

for strapdown system application at small fractions of the cost of the conventional

floated rate-integrating gyro. Examples are the ring-laser gyro, the electrostatically-

suspended gyro, the magneto-hydrodynamic gyro, and the two-degree-of-freedom,

tuned-gimbal gyro. Of these, the latter appears to have the best capability for the

1980's time period, based on current sensor development and accuracies. LaRC is

attempting to further the development of an INS for VTOL applications, based on this

technology. Research studies are examining candidate mechanizations of such a sys-

tem using various degrees of redundancy to provide fail-operative or two-fail-operative

capability. They will also examine error models, effects of vibration associated with

some classes of VTOL aircraft, alignment and initialization requirements and proce-

dures, self-test and failure analyses capability, and error propagation.

3.4 HYBRID NAVIGATION SYSTEMS

A low cost navigation system capable of all-weather operations with a high

degree of accuracy and reliability can be achieved through optimum integration of

equipment, subsystems and computer mechanizations. A hybrid aircraft navigation and

guidance system employing a Kalman optimum estimation filter is capable of providing

the necessary high accuracy performance using low cost subsystems. A Kalman filter

implemented in the computer can provide optimum estimates of the subsystem and
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equipment error quantities. These estimates can be used to "reset" the navigation and

guidance system outputs as well as the outputs of component instruments such as gyros

and accelerometers in the INS.

3.4.1 HYBRID SYSTEM OPERATION

A hybrid navigator combines redundant navigation information from two or
more subsystems together in such a way that the resulting estimate of position and
velocity is of improved accuracy over that which would be obtained by the use of one
of the navigation systems alone. For the optimal case, a Kalman filter is used to make
estimates on the basis of assumed error models for the navigation subsystems. An ex-
ample is shown in Figure 28 where an inertial navigator is combined with a position
fixing device such as Omega or DME. The INS is considered to be the primary source
of required navigation and guidance information (i.e., aircraft position, velocity,
attitude and heading). The fix can be thought of as a measurement of the present
error in the inertial navigator. The filter processes the measurement to update its
optimum estimate of the inertial error. These optimum error estimates are then added
to the inertial navigator output to obtain the optimum position and velocity estimate.
The form of the filter is determined by the error model assumed for each component
navigation system.

The indicated INS position information in Figure 28 is comprised of true air-
craft position plus an error, 6P. The external position reference provides an indepen-
dent indication of the aircraft's true position subject to an error, 6Pr. Subtracting the
reference position information from the INS-indicated position results in the error
difference 6P - Pr which is an input to the Kalman filter. Viewed in this manner,
the error difference information constitutes the "measurement" with 8P and 8V being
the signals to be estimated, and with 8Pr and 8Vr being the noises in the measurements.
Therefore, the Kalman filter considered here is modeled not on actual quantities (P, V)
but on error quantities (8P, 6V). In order for the Kalman filter to be effective, know-
ledge of the statistical properties of each data source is required; this is generally
obtained from system and component testing and from theoretical considerations.

, o,,,in g o, ,~Ihe measurement information by the Kaiman filter results in
optimum estimates (in the sense of satisfying a minimum variance criterion) of the
error states, denoted in Figure 28 by the "caret" quantities. As mentioned earlier,
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Figure 28. Block Diagram of Kalman Filter for Hybrid Navigation
and Guidance System.

equipment errors can be estimated as well as the subsystem output errors. The filter

output Mr denotes an estimate of a measurement error in the reference information

source (Omega or DME). The final step of the process is to perform the update; i.e.,

to correct for errors in the subsystem outputs and component errors. This can be done

in a closed-loop manner, by a mechanical or electrical reset of the equipment, or by

an open-loop reset, in which the individual subsystems and components are not physi-

cally corrected but rather externally compensated in the computer. In either case,

the result is an optimum hybrid system using inputs from all available navigation sub-

systems and equipments, and providing a continuous display of the best possible navi-

gation and guidance information.

3.4.2 HYBRID NAVIGATOR ADVANTAGES

In the more general case, navigation information from any or all of the navi-

gational aids discussed in previous sections may be combined to obtain the best estimate

of the aircraft's position and velocity. Another significant advantage of a hybrid
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system is increased reliability. The hybrid navigator will use all the available infor-
mation; if data from one navigation system is lost for some reason, the output will
still be the best estimate based on the remaining inputs. The filter in Figure 28 may
not necessarily be the Kalman optimum, but perhaps a simpler scheme which provides
near-optimum performance. Indeed, excessive computer requirements may well dic-
tate that sub-optimal schemes be used, although the future availability of low-cost,
large-scale integrated circuits will probably minimize this consideration.

To summarize, the major advantages of the Kalman filtering approach to
hybrid navigation systems are:

* Optimum integration of subsystems provides more accurate navi-
gation and guidance information than is available from any
individual subsystem.

* The optimum filter provides the most efficient use of all available
navigation information. All navigation subsystems can be
modeled in the Kalman filter with a statistical description of
each subsystem.

* The measurement time for any one source of information is
independent of all others; therefore, optimum filtering does notdepend on the availability of any one source of navigation
information.

* Redundant navigation information permits accurate backup modes
to be automatically available in case of a subsystem failure. Anoptimally integrated navigation system can provide calibration
of the subsystems and their components. In the event of a sub-system failure or the unavailability of reference information, theremaining subsystems can continue to function with greater
accuracy than they originally were capable of providing.

* The hybrid system provides a means of subsystem accuracy check-
out and failure detection, since a statistical description of thenavigation subsystem error models is available. By placing con-fidence limits on the accuracy of the navigation information
indicated by the various subsystems, an accuracy checkout schemeis provided. If the expected limits are grossly exceeded, a sub-
system failure may be indicated.

3.4.3 LIMITATIONS OF THE HYBRID NAVIGATOR

The use of Kalman filtering for hybrid navigation has a great many theoretical
advantages; however, the implementation of such a system has several practical limita-
tions. Sensitivity to inaccurate error models and statistics, and the inherent computational
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burden are among the most important of these. Certain aspects of the limitations are

discussed below:

Error Models and Statistics

Implementation of the Kalman filter equations presumes exact knowledge of

the linear state dynamics of the navigation system and measurement errors, and the

statistics of the random processes involved. Since exact a priori information is im-

possible, some form of sensitivity analysis is necessary to verify system performance.

Moreover, many systems, by virtue of nonlinear dynamics or measurements, do not

immediately lend themselves to application of the Kalman filter. Some techniques

which have been used to overcome the difficulty of nonlinear behavior include

linearization about a nominal trajectory, inclusion of the nonlinear behavior in the

filter implementation but basing the error covariance calculations on linear approxi-

mations, and iterative procedures which attempt to reduce the effect of the nonlinearity.

In each case the validity of the resulting error calculations, and the accuracy and

stability of the resulting filter must be established by exhaustive simulation techniques.

Suboptimal Filtering

Since the filter equations must be solved on a computer of finite size, it is

nearly always necessary to approximate the system or its statistics or to otherwise

simplify the filter implementation. Again, it is necessary to verify that the modified

estimator will not experience a significant loss of accuracy. The largest computer

burden of the Kalman filter is imposed by the requirement to compute the error co-

variance matrix as a prelude to determining the filter gains. Therefore, the covari-

ance calculation problem is often circumvented by determining filter gains in an

approximate or altogether different manner. For example, typical gain histories are

observed during the design of the filter and may be approximated in the actual system

by simple functions of time - constants, staircases, exponentials, etc.

Computer Accuracy and Speed

The implementation of a hybrid inertial navigator employing a Kalman filter
must also consider the finite word length and speed of the navigation computer. In

many applications the use of fixed-point arithmetic compounds the accuracy problem.
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Errors are also introduced by numerical algorithms used to approximate mathematical

operations.

In many practical uses of the Kalman filter in hybrid systems the filter gains

decrease as the number of independent measurements grows. Consequently, the filter

tends to reject or discount the most recent measurements in favor of those obtained

earlier in the estimation procedure. Since the error covariance and filter gain calcu-

lations do not normally take into account estimation errors introduced by computer

roundoff and numerical algorithms, these effects can cause accuracy to deteriorate.

Another difficulty is sometimes encountered when the external measurements

are very accurate, whereas initial estimates of the state contain large errors. In this

situation the error covariance decreases very rapidly as the first few measurements are
incorporated. The finite accuracy of the computer may permit the calculated error

covariance matrix to lose its positive definite characteristics, thereby introducing the
possibility of divergent estimation errors.

Often measurements are available more frequently than the computer is capa-
ble of processing them. For example, Doppler radar indications of velocity can be
obtained several times per second. Rather than reject many of the measurements, the
information may be processed by a separate algorithm which is capable of very rapid
operation and then passed on to the Kalman filter in a modified form. Here the
effects of distortion of information in the measurement due to averaging must also be
evaluated.

3.5 AREA NAVIGATION (RNAV) SYSTEMS

Although the VORTAC system provides nearly, complete coverage of U.S.
airspace, available routes are limited by the requirement to fly from station to station.
This has several disadvantages: the indirect routes are longer, much of the airspace is
wasted, the danger of collision is increased near the station where numerous airways
converge and coverage limitations may not permit navigation to certain locations. The
use of area navigation (RNAV) equipment can alleviate these problems by permitting
direct point-to-point navigation. RNAV devices have been under development for
many years, but only within the past half-decade has serious testing demonstrated the
feasibility of area navigation. Since then, considerable progress has been
made not only in the equipment itself, but in the development of standards
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and procedures for the implementation of RNAV in the National Airspace System.

In fact, a joint industry-government task force has recently proposed to use RNAV

as the basis for the air traffic system in the 19 80s (Ref. 45).

RNAV does not refer strictly to the use of VORTAC; any system which can

present position (and usually, velocity) information relative to arbitrary coordinates is

actually an area navigation system. Systems such as INS, Omega and Doppler which

provide direct routings are inherently RNAV devices. These systems are discussed

separately, and the remainder of this section will consider the VORTAC-based RNAV

equipment.

Most available RNAV systems use the information from a single VORTAC

station for navigation. The RNAV routes are specified by waypoints, which are de-

fined by their bearing and distance from a given VORTAC station. These waypoints

are treated as conveniently-located 'phantom' VORTAC stations, and then used for

navigation in the normal fashion. There are two forms of output. The more common

output is range and bearing to a waypoint which has been established by a radial and

distance from a given VORTAC station. The second form of output is a linear display

which shows the aircraft position relative to some map coordinates.

No significant error is expected for the RNAV computations other than what

exists for the VORTAC equipment itself. In the less expensive systems there might be

some computational error added; however, more sophisticated hybrid RNAV systems

would have reduced total error because of optimum filtering with air data, inertial or

other measurements. The typical accuracy desired from RNAV is 2 nm enroute, 1 nm

in the terminal area and 1/2 nm on approach. To achieve this accuracy throughout

the country would require the installation of additional VORTAC stations. Competing

systems, such as Omega and Loran-C, offer RNAV capability with greater coverage

and the opportunity for improved accuracy.

3.6 COLLISION AVOIDANCE SYSTEMS

In order to provide independent commercial VTOL operations, it is necessary

to ensure VTOL-VTOL and VTOL-CTOL separation. The conventional ATC system

uses the ATCRBS to provide ground controllers with the traffic information necessary

to vector aircraft clear of one another. Because VTOL commercial operations should

be independent, and moreover, may take place outside the ATCRBS coverage area,
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alternate sources of traffic information are necessary. A likely candidate for this

information is an airborne Collision Avoidance System (CAS). Both FAA and ICAO

are of the opinion that any acceptable universal airborne CAS must supplement, be

compatible with and be integrated into the ATC system. The existence of a universal

airborne CAS would provide additional protection to VTOL aircraft from equipped VFR

traffic operating near low altitude VTOL routes below ATCRBS or DABS coverage.

Three CAS systems are now undergoing FAA evaluations: EROS, AVOIDS
and SECANT. EROS ia a time-frequency system; AVOIDS and SECANT are trans-

ponder systems. Each is described in greater detail below.

3.6.1 EROS

EROS is a cooperative system in which aircraft use a common time base to
exchange flight data (Ref. 46). Uniform time is achieved by clocks in each aircraft
which are repeatedly synchronized by radio transmission to maintain an accuracy of
two-tenths of a millionth of a second. The use of precise relative time permits re-
serving a definite time period (message slot) for each aircraft to transmit while all
other aircraft listen. Each aircraft transmits two pulses during its message slot. Re-
ceiving aircraft detect the delay between the start of another aircraft's message slot
and the time at which the first pulse is received, and determine the range by dividing
the velocity of propagation by the apparent propagation time. Range rate is determined

by measuring the Doppler shift of the incoming signal. Thus, it is possible to obtain
range (R) and range rate (i) from the same signal and to determine the approximate
time to closest approach (Tau) by the quotient (R/R).

The altitude of the transmitting aircraft is derived from the second pulse,
which is delayed in time from the first pulse as a function of altitude. Fine synchroni-
zation provides coherent time and frequency resolution sufficient to permit one-way
range measurement to an accuracy of 200 ft, altitude comparison to an accuracy of 50
ft, and Doppler to an accuracy of better than +60 knots range rate. Altitude screen-
ing is used to eliminate targets which are not a threat by reason of widely differing
altitudes. The receiving aircraft checks the received altitude information against its
present altitude and any altitudes it wii pass through in 60 seconds if it is in a climb
or dive. Since collisions could occur between aircraft approaching each other below
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the limits of Doppler detection, the system warns of aircraft flying at coaltitude and

within 1.5 miles, regardless of range rate.

3.6.2 SECANT

SECANT (Separation and Control of Aircraft using Non-synchronous Tech-

niques) is a cooperative, transponding CAS designed to be compatible with the dense

air traffic anticipated for the 1980s and beyond. Operating at L-band, SECANT per-

forms: the collision avoidance function by transmitting probes and receiving replies

from all aircraft within hazard range (Ref'. 47). Each reply pulse group contains a data

list of the responder's digital message which gives his identity and altitude. Range and

range rate are determined from the time of arrival of the reply. The frequency stability

required for the SECANT system, one part in 106 , is readily achieved at low cost.

Various discriminants are used to eliminate the undesired signals or "fruit": different

frequencies and probe spacings are allocated as a function of aircraft altitude; the

fields above and below the aircraft are probed separately in 500-foot layers; and

thresholds are established, based on the range required for the collision avoidance

function, which discriminate against signals coming from aircraft too far away to be

involved.. Through such discrimination techniques, SECANT reliably eliminates un-

desired signals, minimizes false alarms and provides early warning time on potential

threats.

3.6.3 AVOIDS

AVOIDS (Avionic Observation of Intruder Danger Systems) is an L-band pulse

beacon ranging system which operates on a cooperative basis with other equipped air-

craft (Ref. 48). :The protected volume around each aircraft is shaped by signal process-

ing and is independent of aircraft attitude and antenna patterns. The AVOIDS approach

is to minimize the number of responses by having only those aircraft that represent

possible threats respond. This is done by pulse coding and the use of altitude discrimi-

nation. The interrogation rate is minimized until a preliminary analysis indicates that a

threat possibility exists. A correlation technique then sifts the potential threat from the

total signals received.

During the interrogation mode, pulse-coded RF energy is radiated omnidirec-

tionally; the rate is random to prevent synchronization and varies between two and ten
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interrogations per second, depending upon the severity of existing threats. The inter-

rogation pulses convey information relative to the altitude of the interrogating aircraft.

Other aircraft receiving this information compare the interrogator's altitude with their

own altitude. A single pulse response is generated by an intruder, if the comparison

indicates that it is within the particular altitude band being surveyed. These responses
are received by the interrogator and stored, depending upon the distance from the in-
truder to the interrogator. A correlation technique is used to detect the presence of
an intruder. The system sequentially interrogates four equal altitude bands 3200 ft
above and below the protected aircraft; this reduces the probability of signal overlap
of response pulses, allows the system to concentrate its interrogations within those
altitude bands which contain potential threats, provides course altitude information,
and allows the threat evaluator to sequentially consider each altitude band.

3.6.4 SYNCHRO-DABS

Another potential candidate for the CAS function is a modified version of
DABS, called Synchro-DABS. Synchro-DABS would introduce synchronization of the
airborne equipment so that airborne systems could be made to transmit time synchronized
responses which would be used in the same way that the EROS synchronized signals are
used.

3.7 TRAFFIC SITUATION DISPLAY

The traffic situation display (TSD) is a concept for expanding the CAS func-
tion to provide air traffic control, and yet leave the separation responsibility in the
cockpit. TSD's are being studied both at LaRC (Ref.49) and at MIT (Ref. 27). The
common equipment is an airborne display which depicts other traffic relative to the
equipped aircraft. The identity, altitude and speed of each target are indicated with
alphanumeric tags alongside the targets. The display can be fed by data link from a
ground data acquisition system or by air-derived information. Although these studies
have been directed toward CTOL operations in the terminal area, the concept is ideal
for the independent VTOL operations.

The TSD concept (Fig. 29) utilizes a computer which generates flight paths
with traffic sequencing and separation, a ground-aircraft data link, and a cockpit
display showing actual and computer-desired aircraft positions overlayed on a terminal-

- 100 -

AEROSPACE SYSTEMS, INC. * ONE VINE BROOK PARK * BURLINGTON. MASSACHUSETTS 01803 * (617) 2727817



m0

PRIMARY AIRBORNE
B BEACON _W _-- -------- -- _____WEATHER

nl RADARS RADAR
m
0T

-I

TSD

0

z TSD

< ATC VOICE COMMUNICATION CHANNELS PILOT CONTROL
z ATC PANEL
m "CONTROLLER

3n -" DIGITAL DATA LINKDT
o TSD DATA0

_, bTSDA "LINK
S8I COMPUTER

ATC NG TSD RECEIVER

CONTROLLER DAT LINK

DISPLAY FORMATING TRANSMITTERMAP

11 FACILITY

MEMORY
GROUND

-1 
'o ATC COORDINATES FOR TARGET AIRCRAFT

- COMPUTER ALPHANUMERIC IDENTITY AIRCRAFT
CENTRAL

ALTITUDE, GROUNDSPEED AIR DATA

SOMPUTER
FLIGHT

CPLAN

SDATA AIRCRAFT
U GYROS

AIR TRAFFIC CONTROL CENTER OR INS
0

Figure 29. Traffic Situation Display Concept.
,,n

I1



area video map. The controller is not an active participant in the system under nominal

conditions; rather, he functions in a parallel mode to operate and monitor the ground

computer system and ensure that the computer-generated flight paths sent to and exe-

cuted by the pilots are providing sufficient separation and efficient sequencing. If a

malfunction occurs, the controller serves as a backup using the radio voice link and

the radar beacon system. During failure of some portion of the ground system, a set of

emergency instructions previously loaded by the ground system as part of its normal set

of display instructions is presented to the pilot for execution until backup ground pro-

cedures and equipment become available.

Implementation of this concept also requires that accurate aircraft locations

and altitudes be fed to the computer. These inputs can be obtained from the existing

ATCRBS, from the upcoming DABS, from aircraft-derived navigation information sent

to the ground over a data link, or from an airborne CAS. Ground-determined and on-

board-determined aircraft positions are compared for failure detection.and then mixed

in the computer for a best estimate.

A small onboard computer processes the information and displays aircraft traf-

fic and map features near the aircraft position. The onboard computer also formats the

computer-desired position of the aircraft and all'desired flight-director information

required to execute the path. Major advantages of this system are increased system

capacity as a result of accurate execution of computer-generated flight paths and

reduced time dispersion at touchdown, and increased pilot awareness of the local

traffic situation and upcoming events. This display of computer-determined informa-

tion will enable the pilot to execute a flight path accurately, and give him increased

flexibility in compensating for system uncertainties.

3.8 COMPARISON OF NAVIGATION SYSTEMS

Table 15 presents an approximate comparison of the major differences in cost,
accuracy, coverage and utilization of many of the navigation system avionics discussed

in this section. The approximate cost of the equipment excludes land, building and
installation expenses. The accuracies cited are typical for normal operating conditions.

Utilization presents an estimate of the number of systems in operation.
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Table 15. Comparison of Navigation/Surveillance Systems.

System Costa Accuracy Coverageb Utilizationc

Direction 5,000/7,000 Variable 200 nm 100,000/2,000
Finding

Marker Beacons 1,500/3,000 300 ft --- 70,000/600

VOR 4,000/30,000 1.5 deg LOS, 200 nm 150,000/2,000

DME, TACAN 5,000/50,000 200 ft to 3 % LOS, 200 nm 40,000/2,000

Decca 6,000/2,000,000 300 ft; 2nm 200 nm 10,000/25

Loran-A 6,000/2,000,000 1,500 ft 600 nm 10,000/25

Loran-C 50,000/5,000,000 100-900 ft 1,200 nm 1,000/8

Omega 25,000/10,000,000 1 nm day; Worldwide with Operational
+ VLF 2 nm night; 8 ground circa 1975

1,000 ft with stations
differential
Omega

ILS 10,000/200,000 0.1 deg LOS, 20 nm; 20,000/500
+ 350 azimuth

Microwave 10,000/200,000 25 ft range; .3 LOS, 30 nm; Under develop-
LGS milliradian + 900 azimuth ment

& elevation

Primary Radar -/400,000 1,000 ft range; LOS, 200 nm -/300
10 azimuth

ATCRBS 6,000/30,000 400 ft range; LOS, 200 nm 5,000/300
.250 azimuth;
100 ft altitude

DABS --- 200-600 ft LOS Planning stage

Doppler 1,500/- 2-3 kt Unlimited 5,000/-

Inertial 70,000/- lkt Unlimited 5,000/-

RNAV 4,000/- 2 nm enroute LOS, 200 nm 100/-
(plus VOR & DME) 1 nm terminal;

1/2 nm approach

a
aCost in dollars of: airborne equipment/ground equipment

bLOS - Line-of-Sight

cNumber of airborne sets/number of ground stations or chains
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Figure 30 provides a comparison of the approximate accuracy of various navi-

gation systems as function of range from the ground station. The systems which depend

on angle measurement (such as MLS, VOR and radar) have position errors that increase
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Figure 30. Approximate Navigation Accuracy vs. Range.
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linearly with range. LORAN-C position accuracy decreases with range because of

poorer geometry and signal-to-noise ratio. The range for a hyperbolic system is inter-

preted roughly as the displacement from the baseline between station pairs. Differen-

tial OMEGA has degraded accuracy with range from the station determining the

differential correction. Although several of the relationships are crudely defined, the

figure is helpful for making gross comparisons between systems.

Figure 31 indicates how the accuracy of the navigation or surveillance system

affects the allowable separation between aircraft. The plot assumes that aircraft must

be separated by a distance 5 to 10 times the uncertainty in measured position. By

relating the accuracy to specific navigation systems indicated along the horizontal

axis, it is possible to see in a comparative sense the potential spacing allowed by each

system.
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Figure 31. Separation Standards vs. Navigation or
Surveillance Accuracy.
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Figure 32 shows the approximate navigation accuracy required to achieve

specified visibility minimums. The approximate relationship was determined by using

the established minimums for existing approach navigation systems. The normal CTOL

and the newly-defined VTOL approach categories are indicated at various points along

the visibility axis. Several specific navigation systems are indicated along the accu-

racy axis. The figure permits approximate prediction of the approach categories the

various systems can achieve.
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Figure 32. Visibility Minimums (RVR) vs. Horizontal Navigation
Accuracy.

Figure 33 shows how the minimum ceiling and mnirnurr visibility are usually

paired. This allows the RVR minimums shown on the other plots to be translated into

equivalent minimum ceilings for those who prefer to think in terms of ceiling rather
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than visibility minima. Moreover, low ceilings and low visibility tend to occur to-
gether in nature in about the way they are shown in the figure. The VTOL and CTOL
approach categories are indicated along the curve. This figure illustrates how much
worse the weather must be to require a particular approach capability for VTOL as
opposed to CTOL.
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Figure 33. Typical Minimum Ceiling vs. Runway Visual Range (RVR).
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Figure 34 shows the percentage of the year when the weather is below a parti-

cular RVR for Boston, London and a point 500 feet above ground at Boston (which might

represent an elevated V-port). The various approach categories are shown on the RVR

axis. The important observation is that the percentage of the time for which very low

approach capability is required is itself extremely small. Operations to an elevated

V-port which projects up into low clouds does increase the percentage of time a given

approach capability is required. For operators trying to avoid the expense of a low

approach capability, it may not be attractive to elevate the landing site. Another

important observation is that the percentage of time that IFR operation is required is

very small. This means that it is very difficult for pilots to maintain their proficiency

for normal IFR operation, to say nothing of Category I, II or Ill operations. As
desirable as it may be to have all-weather capability at the V-port, it may not be

economically feasible for the commercial operator to maintain either the equipment
or the required pilot proficiency.
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Figure 34. Probability of Low Visibility.
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Figure 35 relates the percentage of trips lost because the weather is below

the minimums associated with a given navigation accuracy. Also shown is an approxi-

mate indication of the percentage of trips lost to other factors such as maintenance,

lack of crews, etc. A commercial operator will not put a large investment into

approach capability if the percentage of trips which require it is small relative to the

percentage of trips lost to other factors. The point is that the percentage of trips

which require VTOL CAT I or II is, at the present time, smaller than the percentage

of trips lost to other factors. Consequently, it seems unlikely that VTOL Category Ill

capability will be required for commercial operations within the next decade.

5 -

o&

2 - 08S0_0

0 I I I I

0 100 200 300 400

* t * 4 NAVIGATION ACCURACY, FT
MLS LORAN-C

MULTILATERATION DUAL DME

Figure 35. Schedule Reliability vs. Navigation Accuracy.
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SECTION 4

VTOL NAVIGATION AND GUIDANCE SYSTEM

This section describes the straw-man navigation and guidance systems pro-

posed for application to commercial VTOL operations. A computer simulation program

was developed to provide a flexible tool for the evaluation of alternate navigator con-

figurations, guidance schemes, estimator algorithms, error sensitivities, etc. The

recursive Kalman filter formulation is developed, and error models are presented.

4.1 OVERALL SYSTEM DESCRIPTION

Operations of the proposed system are keyed to a fully automatic systems

approach for navigation, guidance, and control, with the pilot as a monitor-manager.

A functional block diagram of an automatic VTOL avionics system showing the flow of

information and the relationships of the three principal subsystems (navigation, guidance

and flight control) is presented in Figure 36.

FLIGHT
PLAN DISTURBANCES

AIRCRAFT

VELOCITY CONTROL MOTIONS

GUIDANCE COMMANDS FLIGHT DISPLACEMENTS VTOL
CONTROL

SYSTEM AIRCRAFT

ATTITUDE

INFORMATION

VELOCITY
INFORMATION NAVIGATION MEASUREMENTS SENSORS

SYSTEM

POSITION INFORMATION

Figure 36. Block Diagram of VTOL Avionics Systems.

The function of the guidance system is to control the position and velocity of

the rotorcraft in order to follow a specified flight plan; e.g., to transport connecting

passengers from a downtown heliport to a conventional airport. To perform this task,
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the guidance system requires position and velocity estimates from the navigation system.

It uses these data to generate velocity commands for the flight.control system, which

provides the direct control of the vehicle maneuvers by displacement of the appropriate

controls.

4.1.1 CONFIGURATION

The basic configuration of the recommended navigation system is dictated by

the requirements for independent, all-weather VTOL operation. As discussed in

Section 2, RNAV capability is essential, with sufficient approach accuracy to ensure

schedule reliability to VTOL Category II weather minima. A general multi-configuration

straw-man system is shown in Figure 37, which indicates the principal subsystems and their

interactions. Several alternate sources of navigation information are included for the

DME AIR DATA RADAR DABS CAS
ALTIMETER

o < LORAN

TRAFFIC

SITUATION
DISPLAY

AREA NAVIGATION

AND GUIDANCE
COMPUTER

INERTIAL* VELOCITY-
COMMAND

FLIGHT CONTROL
SL SYSTEM

S MLS*

MULTI- 4D AIRBORNE
LATERATION FLIGHT - WEATHER

PROFILE RADAR

* BASELINE SYSTEM

Figure 37. Straw-Man Navigation System for Commercial VTOL Operations.
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enroute and approach phases of operation. It is not intended that all of these equip-

ments will be required; however, preliminary analysis indicates those shown could
satisfy the system requirements. Further evaluation is necessary for a final recommenda-
tion. On the other hand, the final system should possess the capability to accept
alternate or additional inputs.

* Enroute Systems. The enroute navigation system must provide
area navigation capability. Four contenders are: Multiple DME,
Loran, Omega/VLF, and INS.

S Approach Systems. Previous studies with the LaRC CH-46 tandem-
rotor helicopter have indicated that an inertial navigation system
is needed for the precision approach, hover, and landing phases
of flight. The strongest alternate contender for approach navi-
gation is the MLS. Consideration is also being given to a multi-
lateration system.

The baseline straw-man system is a hybrid navigator which uses a relatively
low-cost inertial sensor with DME updates, and MLS as well in the approach/departure
phases. The selection is based on the requirements for independent, all-weather VTOL
operation. The requirement for independent operation dictates a capability for low
altitude airways, steep and curved approaches around obstacles, traffic, and noise
sensitive areas. This in turn implies a 4D RNAV capability at low altitude. The inclu-
sion of 4D RNAV capability would allow precise arrival times at the landing threshold,
initial and final approach fixes and, if required, intersections with CTOL routes. This
can be expected to lower the dispersion of arrival times to 5 seconds and offer a 30- to
40-percent increase in landing capacity (Ref. 50). Steep approaches can be performed
with a velocity control system and conventional display. The onboard traffic situation
display provides an independent means for separation assurance from other air traffic
and prominent ground obstructions. The use of airborne weather radar permits pilots to
recognize and avoid severe weather conditions while maintaining precise flight paths
with the RNAV system. Together these systems improve safety and expand all-weather
capability.

,The requirement for all-weather VTOL operation also dictates a need for
reliable and redundant automatic landing capability, which places a specification on
the accuracy and dynamic response of the position and velocity data required. Hori-
zontal velocity accuracy of about 2 knots over a bandwidth of about 4 Hz, and position
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accuracy of about 25 feet over a bandwidth of about 1 Hz are needed for landing.

Velocity information can be obtained from position measurements, but the specification

on position data then must have higher accuracy over a wider bandwidth in order to

meet the velocity specification. The accuracy requirement on the velocity information

is only moderate for a velocity-sensing device such as an inertial system, but it is quite

severe if the velocity is obtained from position data.

A basic argument for the hybrid navigator is the need for accurate velocity

information over the high frequency portion of the vehicle's motion spectrum. The

hybrid gives additional advantages in that the accuracy of the radio navigation system

is enhanced over its unaided performance, and greater reliability is gained through

redundancy.

The choice of an inertial system over air data or Doppler is based on cost and

reliability. Attitude information is already required for IFR capability and a computer

is necessary to provide the RNAV computations; the only additional components required

for an inertial system are the accelerometers. The only existing navaid capable of pro-

viding position information sufficiently accurate to meet the velocity specifications is

the MLS. However, loss of an MLS signal could leave the rotorcraft in a compromising
control situation without velocity information. Airspeed and heading data are inade-
quate at low airspeeds near the ground. The choice of radio navaids for enroute navi-
gation is not as compelling. None of the existing enroute systems is sufficiently

accurate in its present form to provide approach guidance to even CTOL Category I mini-

ma. On the other hand, all are sufficiently accurate to satisfy enroute requirements
and to place the rotorcraft within the window of an accurate landing guidance system.
Both Loran and Omega require external velocity information in order to achieve the long
averaging times necessary for accuracy.

4.1.2 OPERATION

The area navigation computer is the focal point of the straw-man system.
Sensor inputs include DME ranges; Loran, Omega or VLF time difference measurements;
inertial attitudes and velocities; MLS azimuth and elevation; multilateration ranges;
- .- .,A-A L, l. .. A, T_.-& -. _ r J. . . . .......8 aW.... ... . a.. aa s ressure ,ltitude vertical speed and air-

speed to the system. Principal data inputs to the system are: estimated wind speed and
direction; track/waypoint sequence; and ground-based system coordinates. The major
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outputs are velocity corrections to the flight control system, and position and heading

to the TSD. The TSD accepts position information on other proximate aircraft or ob-

structions from DABS and/or CAS to provide a relative indication of potential hazards.

The system would also be interfaced with conventional displays by providing distance-

to-go, cross-track distance and track angle error.

The computer algorithms include:

* Linearized solution of position fix.

* Short term air data dead reckoning solutions which add position
movements to aircraft lat/long, thereby compensating for position
update delay times in the airborne computer.

* Coordinate conversion of coded waypoints whenever they are
not in memory.

* Great circle solution for desired course.

* Wind solution for wind along-track, wind cross-track.

* Ground speed and actual track.

* Distance to go and time to go.

* Steering solution in terms of track angle error.

* Cross-track distance.

* Longitudinal, lateral and vertical velocity corrections for VCFCS.

* Limit logic computations.

* Automatic leg changeover.

* Automatic determination of Start Turn Point to achieve track-to-
track change.

The variables would be computed in a single iteration and stored until dis-

played or dumped. Nondestructive readout of coded waypoints is assumed; storage is

required for ground station frequencies, identification, and coordinates; waypoint

storage including mandatory report logic is assumed; altitude processing for glide slope

computation is, included; flight plan storage is provided.

4.2 VALT SIMULATION PROGRAM

A digital simulation program entitled VALT (VTOL Automatic Landing Tech-

nology) is being developed to analyze the straw-man navigation system performance

and to conduct parametric studies of subsystem errors. Figure 38 is a general block
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diagram depicting the major elements of the simulation. x is the state vector of the

rotorcraft:

ACTUAL ESTIMATED NOMINAL
NAVIGATION NAV. ERROR FLIGHT

ERRORS STATISTICS PLAN

NAVIGATION ACTUAL ESTIMATOR (GUIDANCE
(KALMAN S

SENSORS MEAS. FILTER) SYSTEM

VELOCITY

CORRECTIONS

ROTORCRAFT VEHICLE
ROTORCRAFT m VCFCS

STATE CONTROLS

WINDS

Figure 38. Block Diagram of Program VALT.

VN

VE

x= VD (6)-D

L

h

where VN, VE, VD are the North, East and Down components of ground-referenced

velocity; L, 2, h are the latitude, longitude and altitude position coordinates.

Appendix A contains details of the equations of motion and the coordinate frames used

in the analysis. The estimate of the state provided by the navigation system is X. The

guidance system generates velocity corrections, which the flight control system con-

verts into rotorcraft attitude and thrust commands. Details of each element of VALT

shown in Figure 38 are presented in the following discussions.
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4.2.1 ROTORCRAFT MODELS

An analytical model has been developed to represent the point-mass dynamics
of a rotorcraft. This model, described in Appendix A, neglects the rotational dynamics
of the vehicle and describes the rotorcraft translational motion in terms of the external
forces acting upon it. For purposes of preliminary navigation and guidance system
analyses, the vehicle and rotor attitude response dynamics are assumed to be negligible.
The control inputs to the model, and the resulting external forces are summarized in
Table 16.

Table 16. Rotorcraft Model Control Inputs and Resultant Forces.

Control Variables External Forces

Rotor Thrust Collective (eo) Rotor Forces (T, H, Y)
Rotor Thrust Orientation (l' , 2) Airframe Drag (Dp )
Vehicle Turn Rate (rc) Gravitational Force (W)
Vehicle Pitch Attitude* (ec) Wing Lift and Drag* (L, Di)
Vehicle Roll Attitude* (0c) Auxiliary Propulsion Thrust* (P)
Auxiliary Propulsion Throttle* (n)

*Compound Helicopter Only.

The rotorcraft model is applicable to either the pure helicopter or the com-

pound helicopter configuration. In the case of the pure helicopter, the wing lift L,
induced drag Di, and propulsion system thrust P are equal to zero.

For the compound helicopter, certain assumptions are necessary regarding the
sharing of lift and control functions between the airframe and the rotor. In the speed
range between zero and 80 knots,.the Sikorsky Model S-65-200 compound behaves
essentially as a pure helicopter, and all the lift is supplied by the rotor. From 80
knots up to the maximum flight speed of 261 knots, rotor thrust can be assumed to
decrease linearly to a final value of about one-third of the value at 80 knots: the
remaining lift is supplied by the wing. Control is provided entirely by moments due
to the rotor up to 80 knots. From 80 to 140 knots, control is provided by a mixture of
rotor moments and conventional airplane-type elevator-, aileron- and rudder-induced
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moments. Finally, from 140 knots to 261 knots, control i s entirely of the conventional

airplane type.

4.2.2 FLIGHT CONTROL SYSTEM

Routine commercial VTOL operations under IFR flight conditions will undoubt-

edly require an advanced flight control system. For this study, a velocity-command

flight control system (VCFCS) has been assumed. Unfortunately, the development of

such a system is a significant task, which has not been performed for the two Sikorsky

models used for this study. In lieu of this, a VCFCS design developed for the LaRC

YHC-1A tandem-rotor helicopter (Ref. 51) was selected for use in the simulation.

However, dynamic responses with characteristic times of one second or less were ne-

glected in the interests of simplicity and to conserve simulation time. The VCFCS is

shown in Figure 39. The guidance commands VXG, VYG and VZG are the errors

between desired and actual velocity components in the level-heading frame (defined in

Appendix A). The VCFCS outputs are the rotor collective command 0 , the rotor atti-

tude commands pl and P2, and vehicle-commanded yaw rate yc. The lateral control

axis shown in the lower half of the figure has two modes of operation. The "cruise"

or high speed mode feeds back sideslip angle to provide coordinated turns. The

"hover" mode attempts to maintain heading for speeds below 30 kt.

It is expected that the basic VCFCS shown in the figure should be adequate

for analyzing these helicopters, although some adjustments might be necessary to the

parameter values. In addition, appropriate limits are required on the VCFCS outputs.

For example, the bank angle and yaw rate commands are limited to a "standard rate

turn" of 30 per second.

The VCFCS in Figure 39 contains two integrations in the lateral axis hover

mode. In addition, yaw rate must be integrated to yield yaw angle changes. These

features require the addition of three state variables to the rotorcraft state vector x

for the numerical integration of the system equations.

4.2.3 GUIDANCE SYSTEM

A simple perturbation guidance scheme (Ref. 52) has been developed to pro-

vide the velocity corrections to the VCFCS. As described in Appendix B, this provides
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a linear feedback guidance law, based upon a specified nominal flight path. Figure 40
A /' AA

illustrates the guidance scheme. The estimated position coordinates L, I, h are com-

pared with the values on the nominal flight path L*, ,*, h*; any deviations produce

velocity corrections 8VN, 6VE, 6VD. These corrections are subtracted from the

corresponding nominal velocity components V*, VE, VD to produce revised velocity

commands. The components VXG , V G, VZG input to the VCFCS in Figure 39 are

obtained by subtracting the current velocity estimates, and converting the results into

the vertical-heading plane.

+ NC L +
VN L*

VE + VE CONTROLLED +

KA

-D h*

Figure 40. Rotorcraft Guidance Scheme.

KN, ,

5VN KN, h

KE, _ KE';

8vo + +o' K

Figure 40. Rotorcraft Guidance Scheme.
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To implement the guidance scheme, the nominal state variables, the nominal
control variables, and the feedback gains are precalculated and stored as functions of
time in the onboard computer. During flight, the actual state variables are measured
and their deviations from nominal used to calculate corrections to the stored nominal
control variables.

An interesting problem in the guidance algorithm is determining the criterion
used in changing from one leg of the nominal path to the next when in the vicinity of
a waypoint. As illustrated in Figure 41(a), the rotorcraft will never pass a waypoint
exactly due to system errors and dynamics. The approach taken was to specify a de-
sired airway width, w, and changeover to the next leg when intercepting the exten-
sion of that leg-boundary (Fig. 41(b)). This provides lead in the turn when the air-
craft is on the outside of the airway centerline, and lag when it is on the inside. To
apply this criterion, the guidance system determines the estimated distance, d, from
the extended centerline of the next leg, and compares it with w. From geometry,

d '(AL sin Yi+l - A cos Li+ 1 cos Yi+l) (7)

A A
where AL = L - Li+ 1 and A) = , - R+1. The criterion then is:

> w continue on leg i

d (8)
5 w change to leg i + 1

4.3 HYBRID NAVIGATOR

The hybrid navigator accepts measurement data from the various systems shown
in Figure 37, and processes them via a linear Kalman filter to provide the optimum
estimate of the rotorcraft state x for the guidance system calculations. The following
discussion describes the formulation of the recursive filter, the error models for the
actual measurements, and the error models assumed by the onboard estimator.

4.3.1 RECURSIVE FILTER

The analysis is based on the minimum variance estimator as derived by Kalman
for the discrete measurement case (Refs. 53, 54). The filter operates on a system of
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Figure 41. Guidance Leg Changeover.
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navigation errors which are referenced to the nominal flight plan x*. The error equa-

tions for the hybrid navigation system are written in the conventional, first-order

linear form:

82= F1  + (9)

where 6 x = ' - x* = state vector of estimated navigation system errors

wi = vector of forcing functions

F1 = linearized system dynamics matrix

The formulation of the Kalman filter imposes the requirement that the system

be driven by white (uncorrelated) noise. Because the system errors w are not neces-

sarily modeled as white noise, "shaping filters" may be introduced to convert white

noise inputs into appropriately shaped "colored" noises which describe the correlated

statistical behavior of the error sources (Ref. 55). Thus, the estimator state must be

augmented to include the shaping filter states:

= estimator state (10)

where b is a vector of assumed measurement errors (correlated noises, biases or scale

factors). The error equations for the augmented estimator state are

= Fy + w (11)

where F is the augmented system dynamics matrix and w is now a white noise vector.

The error covariance matrix of y is defined by

P = < Y T >  
(12)

where< > indicates the expected value. Between measurements, the covariance

matrix propagates by the following equation

P = FP + PFT + Q (13)

- 123 -

AEROSPACE SYSTEMS, INC. * ONE VINE BROOK PARK * BURLINGTON. MASSACHUSETTS 01803 * (617)272-7517



where F and G are defined above, and the white noise strengths define QI

< w (t) w (')T> = Q(t)8(t - 7) (14)

where 8(t) is the Dirac delta function.

The initial conditions for the covariance matrix must be specified

P(t0) = < Y (t0)T(tO) > (15)

The noise strengths Q are assumed to be constants, which must also be specified. For

an exponentially-correlated error, the noise strength is calculated from the variance

(a ) and the correlation time (-r) of the noise:

Q = 2a 2/T (16)

To incorporate measurements, the recursive navigation technique (Ref. 56)

will be used to avoid matrix inversion and to eliminate unnecessary computation on

missing measurements. With this approach, each measurement will be a scalar:

^ = * h T

8m m - m= + r (17)

h is a "geometry" vector which selects the components of the rotorcraft state error
measured plus the measurement error; it is determined by the type and geometry of
the measurement; r is assumed additive random noise in the measurement. m is the
estimate of the measurement based on the linear error model of Eq. (11). In fact,
the actual measurement is usually a nonlinear function of the actual rotorcraft state:

m = m(x, t) (18)

Whenever a measurement is taken, the estimate of the error state is updated
as follows:

y' = y + K(6m - OB) (19)

- 124 -

AEROSPACE SYSTEMB, INC. * ONE VINE BROOK PARK * BURLINGTON. MASSACHUSE'TTS 01ni3 * (517) 727E17



where .is the estimate just before the measurement, and y.+ is the estimate after

incorporating the measurement. K is the vector of filter gains. As a result of the

measurement, the error covariance matrix is updated as follows:

P += (I- K hT)P( - K hT)T T + KRKT

= (I - K hT)p - [Ph - K(hTPh + R)]KT  (20)

The optimum (Kalman) filter gains provide the minimum-variance estimate
of the navigation system errors:

K = - Ph (21)
-opt a -

where

= hT Ph + R (22)

R = < r2 > = random measurement error variance (23)

The optimum update of the covariance matrix is then

P = (I - K hT) = P - cK KT (24)
opt opt-opt

The value of P+ is used as the initial condition on P to start the next interval between

updates.

4.3.2 NAVIGATION SENSOR ERRORS

Error models have been developed to represent the actual measurements

which would be provided by each of the straw-man navigation systems.

* Air Data

The air data system measurements consist of airspeed, barometric altitude,
and altitude rate. The principal error in the airspeed measurement Va is the wind, so

instrument errors will be neglected:
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V V = [(VN - W +(VE - W +(VD - WD )  (25)

where WN, WE and WD are the North, East and Down components of the wind.

The horizontal wind can be approximated as a steady wind, plus an exponen-

tially correlated wind with specified correlation distances (d) and standard deviations,

plus random gusts. These are expressed in terms of the wind speed (Vw) and its direc-

tion (ew):

V =V + V + V =(26)w w c w (26)

-iew = e + e + e = tan (WE/WN) (27)
s c g

where

Vw = -V / + w (28)W W V V
C C W W

ew = -ew /7 + wew (29)

where 7 = d/Vg is the effective correlation time and w is a white noise whose strength
is obtained by Eq. (16).

The vertical wind is modeled as exponentially-correlated plus a random gust:

Wz = W +W = -WD (30)
c g

W = -Wz /7 + w (31)
C c z Z

The altimeter error is modeled as a scale factor error plus a random error

h = Khh + wh (32)

where the scale factor Kh is a constant
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Kh = 0 (33)

The vertical speed measurement is included primarily for damping of vertical
motions. The steady state error is assumed to be negligible

h = h (34)

* INS

The error model for a single axis of the inertial navigator is shown in Figure
42 based on Reference 28. The errors w and n are white noises of strengths W and N

respectively. The strengths of N and W are shown in the figure for a typical 1-knot

system. The INS measurements are:

VINS = VN + vN (35)

VINSE = VE + E (36)

FT/SEC 2  FT/SEC FT FT/SEC2  FT/SEC

S S S S

I KT INS N = 10-4FT2 /SEC 3  2 SCHULER FREQUENCY (w2/R)

W O 10-2FT 2 /SEC 3  d = GYRO DRIFT RATE AS A VELOCITY

c = PLATFORM TILT AS A DISPLACEMENT

Figure 42. Error Model for Single Axis of an INS.

* DME

The major error in a DME measurement is a range bias with a standard devia-

tion of about 500 feet. This bias may be estimated and subtracted out if there are
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redundant measurements (by using more than two DME stations or with a hybrid navi-

gator, for instance). In that event the remaining error is white noise with a strength

of about 105 ft2 sec. The DME range measurement is therefore:

RD {r2 [(L -LD) 2 + cos2 LD( - ~21+ (h - hD)2 1/ 2

+ bD + wD (37)

where

bD = 0 (38)

and LD, AD' hD are the coordinates of the DME ground station. The model assumes a

reasonably high quality DME transceiver in the aircraft. At least a partial circuit of

the DME facility is required to estimate the bias if the hybrid navigator is working with

velocity information only.

* Loran

Atmospheric noise at the receiver is the major source of error in the Loran

system. The accuracy depends on the signal to noise ratio, which varies with range

and other factors. A white noise of strength 2 x 106 ft2 sec is a representative value

for the position error on the baseline. The geometry vector introduces further accuracy

dilution for aircraft locations off the baseline. The measurement for each line of posi-

tion is a range difference between stations A and B:

AR = pA - B + b AR + wAR (39)

where

-1
Pi = re cos [sin L sin L. + cos L cos L. cos (A - .Yi)] (40)

with i = A. B.

e VLF/Omega

The most significant errors in VLF come from variations in the velocity of
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propagation which are due primarily to changes in the reflecting properties of the

ionosphere. These depend strongly upon the intensity and angle of incidence of solar
radiation, and the errors are therefore a strong function of the time of day and time of
year. The stability of the transmission time is on the order of one microsecond (1000 ft),
but the ability to predict the transmission time is not yet as good at the propagational
stability. Predictable corrections based on date, time of day and distance to the
station are equivalent to about 3 or 4 miles in position and leave residual errors of one
or two miles. This residual error can be modeled as exponentially correlated with a
standard deviation of 1 nm (day) or 2 nm (night) and with a correlation time of 30
minutes. The remaining error is modeled as a white noise of strength 107 ft2 sec,
and includes error due to broad-band atmospheric noise at the receiver. The measure-
ment equations are identical to those for Loran, Eqs. (39) and (40).

* MLS

The position accuracy of the scanning beam MLS is a function of range:
C-band accuracy is about 3 feet at 1000 feet range, while K u-band accuracy is 3
feet at 10,000 feet range. The associated DME accuracy is to be about 25 feet
independent of range. The equipment will be capable of providing a fix with a single
scan; therefore, the time between fixes is the reciprocal of the scanning frequency, or
one-tenth second. The principal position error can be modeled as a white noise of
strength R = a2 At; reasonable values for R are 0.001 degree2 sec for the glide slope
and localizer, and 60 ft2 sec for the DME. The MLS is also subject to a bias in
elevation and azimuth of 0.050 and 0.090, respectively. The model for the MLS
elevation measurement is

r -1 h -mhe = tan
el 2 2 2re [(L-Lm) + Cos L(, - ) 1/2

+ bel wel (41)

The azimuth measurement is
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cos LM(. - em)
e tan +b + w (42)L - L J a z

The DME measurement is the same as in Eq. (37).

4.3.3 ESTIMATOR ERROR MODELS

The airborne estimator will attempt to estimate the rotorcraft state and

selected measurement errors, based on a set of predicted error models which will always

differ (at least slightly) from the actual errors.

* Estimator State Vector

The estimator state is usually selected as a compromise between accuracy and

onboard computer requirements. For the present analysis, the estimator state vector is:

6VN

8VVE

6V
VD 6 rotorcraft state errors

sL

8h

W
North and East Wind Components

W

Y (43)
bD

bD 2  4 DME biases

bD 3

bD

L North and East INS Driftsv
E
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For this estimator state, the system dynamics matrix in Eq. (11) is:

1/N0 0 0 0 0 0 0 0 0 0 0 0 0

0 1/TrE 0 0000 0 0 000 0 0

0 0 1/ 0 000 0 00000 0

1/R 0 0 0000 0 00000 0

0 R 0 0 0 0 0 0 0 0 0 0 0 0RcosL

0 0 -1 0000 0 00000 0

0 0 0 0 00 0 rW 0 00000 0

0 0 0 0000 0 00000 0

0 0 0 0000 0 00000 0

0 0 0 0 0 0 0 0 0 0 00 0 0

0 0 0 0000 0 00000 /0

The three rotorcraft velocity errors, two wind components and two INS drifts
are all modeled as exponentially-correlated processes:

rN, E, rD = correlation times for pilotage deviations from the nominal path

TWN' WE = correlation times for North and East wind components

Tr E = correlation times for North and East INS driftsv N / VE

- 131 -

AEROSPACE SYSTEMS, INC. * ONE VINE BROOK PARK * BURLINGTON, MASSACHUSETTS 01803 * (617) 272-7517



The driving noise in the estimator is

w

aircraft acceleration noise
WE about nominal

WDw
D

0

0

0

w = N wind noise (45)

WE

0

0

0

0

w
v
N

INS accelerometer noise

vE

The Kalman filter estimates the perturbations y from the nominal path by

using the perturbations in the measurement:

=m T8m = y+r = hT y +r (46)

where r is a random measurement error and

S= [h h2 , ... h14 (47)_ = ...

Thus the geometry vector is the gradient of the measurement with respect to the esti-
mator state, evaluated on the nominal path. For each measurement, the estimator must
calculate the appropriate geometry vector and evaluate the equivalent measurement on
the nominal path.
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* Air Data

Airspeed is assumed to be measured with a random measurement error of about
2 kt. The nominal path is defined as having no winds. Therefore, the nominal measure-

ment is

^ n*2 *2 1/2
Va = nominal ground speed = [VN + VE i + rV (48)

a

The non-zero elements of the measurement vector are

* *2 *2 1/2
h1 = VN/[V N +V E

* *2 *2 1/2

h2 = VE/[VN + VE ] (49)

h7 = -h

h8 = -h2

The altimeter error is modeled as a zero-mean bias plus a random error:

h = h + rh (50)

h6 = 1 (51)

The vertical speed measurement error is modeled as a random with a standard
deviation of the order of 100 fpm:

h = h + rh (52)

h 3 = 1 (53)

* INS

The INS error is a correlated drift plus a random error:
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e*

VINSN VN + rINSN (54)

(55)

* 13*

VINSE = VE + rINSE (56)

h2 = 1

(57)
h14 1

* DME

The estimated DME errors are represented as biases plus random errors:

* = r2  * *2 2 * * * * - *2 1/2
RD = re[(L - LD ) + cosDLD( -D)] +(h -hD)

+ rD (58)

h4 = r2 (L - LD)/R D

2 2 * * * *
h5 = re cos LD (y -eD)/R D  (59)

h6 = (h - hD)/RD

h8+i = 1

* Loran, VLF & Omega

Range difference measurement errors are included as random errors:

AR = PA PB + rR (60)
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* -1 * * * * (
PA re cos [sin L. sin LA + cos LA cos (, - A)] (61)

h4 = re(COS eB - cos eA)
(62)

h5 = re cos L (sin eB -sin eA)

where

* *

sin (A - a )
tan e A  * * * (63)

tan LA cos L - cos (A - ) sin L

* MLS

Elevation and azimuth errors are included as random measurement errors:

-1 h* - h*
gel= tan m + e (64)

r [(L* -L*)2 + cos2 L*(v,* - e)
e m m m

-r (L* - L*)(h* - h*)
h e m m
4 - 2DS

2 2
-r cos L(.* - s)(h* - h*)

h5 e  m 2 m (65)
DS

h6 =-
S

where
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D = r [(L* -L*) + cos2 L* (* - * 1)2e m m m

(66)
2 2 2

S = D + (h* - h*)

cos L* (* *
* tan-1  M + r (67)
az L* - L* az

- cos L*(. - m)

h4  m m 2 (68)
(L* - L*) + cos L* (..*- .*)m m m

cos L*(L* - L*)
h mm

5 2 2 2
(L* - L*) + cos L*(,* - £* )

m m m

4.4 NORTHEAST CORRIDOR SCENARIO

In order to provide as realistic an environment as possible for evaluation of

the straw-man VTOL navigation systems, a preliminary effort was undertaken to estab-

lish typical RNAV route profiles between Boston, New York, and Washington, D. C.
These routes were selected with regard to the criteria discussed in Section 2; they were
as expeditious as possible and yet avoided:

* obstructions.

* noise sensitive regions.
* controlled airspace.

* major uncontrolled airfields.

Furthermore, since these routes were to be examined as part of the flight
evaluation program, an additional criterion was continuous coverage by the existing
VORTAC system. The procedure adopted was to make a preliminary selection on the
basis of the first four criteria. Then Program COVER (Appendix D) was used to ensure
the availability of VOR/bME navigation information. The results of the flight evalu-
ation program will be described in Section 5.
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The selected Zulu airways and Tango connectors are summarized in Figure 43.

Detailed diagrams of the routes between Boston and New York City are illustrated on

the aeronautical charts in Figures 44 through 46. These routes will form the basis of

the straw-man systems parametric evaluation with Program VALT during the next phase

of the investigation.

BOS

BI

B2

Z2

ZI

N2

NI

N4 NYC

N3

Z4

Z3

D2

DI

WDC

Figure 43. Zulu Airways and Tango Connectors.
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SECTION 5

FLIGHT EVALUATION PROGRAM

This section summarizes the results of the flight evaluation program which was

conducted in conjunction with the analytical investigation of VTOL navigation require-

ments. A chronological summary of the individual flights is presented in Appendix E.

Reference 57 contains detailed descriptions of planning, execution and analysis involved

in the flight evaluation program.

5.1 INTRODUCTION

The objective of the flight investigation was to obtain:

* Real world orientation to analysis of current systems and their
capabilities.

* Preliminary flight verification of the results obtained from the
analytical tasks.

The flight program was designed and executed in two parts: Part I provided

flight data applicable to the helicopter cruise and terminal area phases of flight for

inter-urban VTOL operations; Part II provided flight data applicable to VTOL opera-

tions in the intra-urban environment. The flight data obtained included coverage of

existing communication/navigation/surveillance systems, descriptions of CTOL pattern

conflicts and encounters, low altitude route and heliport site evaluations, and descrip-

tions of unique operational problems. These data were derived from a series of flights

with three basic types of profiles:

A. Typical inter-urban, low-altitude, VOR/DME-based RNAV routes.

B. Typical intra-urban routes and segments.

C. Special items, route segments and maneuvers designed to check facility
coverages or exercise existing capabilities.

Two different types of aircraft were used to achieve the flight evaluation goals

under a fight schedule and at the minimum cost.

* A fixed-wing general aviation aircraft with IFR and VOR/DME
RNAV capabilities.

* A commercial helicopter operating in the present intra-urban
environment.
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For Part I, ASI leased aircraft and flew the appropriate profiles with its own personnel.

The planning, flight evaluations, and post-flight data analysis were conducted by the
same ASI engineers/pilots who performed the analytical tasks described in the previous
sections. Part II was conducted by ASI under a teaming arrangement with New York
Airways; the ASI engineers/pilots served as test planners, observers, and data analysts,
drawing heavily on the expertise of those NYA pilots who participated in the flight
evaluation program.

The fixed-wing aircraft was a 1963 Cessna 182, described in Table 17.
Operating this aircraft in the flight program offered several advantages:

* Lower cost.

* Excellent avionics equipment.
* Good ground visibility for position checks (due to high wing

design).
* Minimal noise generation at low altitudes
* High maneuverability.

* Good fuel efficiency.

* Low maintenance.

The main disadvantage was the low cruise speed (125 kt).

Table 17. Cessna Model 182 Fixed-Wing Aircraft Features.

Characteristics Avionics

Gross Weight (Ib) 2800 Dual 360-Channel NAVCOMS
Empty Weight (Ib) 1560 Course Line Computer (RNAV)
Cruise Speed (kt) 141 Pictorial Navigation Display
Range (nm) 787 DME
Length (ft) 29 Automatic Direction Finder
Height (ft) 9 Glide Slope Receiver
Power Plant Continental Transponder

0470-R (230 HP)
Three-Axis Autopilot With

Propeller Diameter (in) 82 Altitude Hold
Iconst .. unt speed ,
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L. G. Hanscom Field in Bedford, Massachusetts, which is located within a

few minutes of the ASI headquarters, served as the base of operations for the fixed-

wing flights. Each flight was planned to combine elements from Profiles A and C; a

total of 47.9 flight hours was accumulated in completing ten individual data-
gathering flights.

The S-61L helicopters and crews that participated in Part II of the flight

evaluation program were also part of the daily commercial operations by NYA. The

S-61L is described in Table 18; it was flown for 7 hours on 3 different flights that com-

bined elements from Profiles B and C. These dedicated flights occurred during the

midmorning, off-peak hours in the New York City area. In addition, valuable in-

sights into present-day commercial VTOL operations were acquired by the ASI

engineer/pilots who rode as observers on several regularly-scheduled NYA flights.

Table 18. Sikorsky S-61L Commercial Helicopter Features.

Characteristics Avionics

Gross Weight (Ib). 19,000 Dual VHF Comms

Empty Weight (Ib), 11,792 VOR Receiver

Cruise Speed (kt) 122 Glide Slope Receiver

Range (nm) 245 Marker Beacon Receiver

Length (ft) 73 Transponder

Height (ft) 17 MLS Receiver*

Power Plant (2) 1500 HP GE DME**
CT 58-140-2 RNAV**

Rotor Diameter (ft) 62
*Temporary, for demonstration.

**Under Consideration.

5.2 VTOL INTER-URBAN OPERATIONS

The examination of current and projected technology and systems has con-

centrated on several major issues, including coverage and accuracy. One goal of

the flight evaluation program was the verification of the assumptions used in modeling

the coverage and accuracy of existing systems. Program COVER (Appendix D) was
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developed to aid low altitude route determination using line-of-sight navigation,

communication, and surveillance systems. To assess the usefulness of this program for

route planning, comparisons were made between the VORTAC coverage predicted by

Program COVER and that actually observed during flight evaluations.

5.2.1 LOW ALTITUDE VORTAC COVERAGE

The results from Program COVER are plots of predicted geographical coverage

at various flight altitudes for selected facilities. The coverage plots are governed by

known restrictions and the normal line-of-sight radio horizon. Consequently, it was

easy to verify COVER predictions by plotting the flight results directly on the COVER

plots.

The flight results were recorded by noting the status of the VORTAC signal at

various locations. That status was described by a simple code, shown in Table 19, to

facilitate the recording and the reduction of the data. Code 1 indicates the station

was tuned and identified and that it provided apparently reliable bearing and DME

readouts with no flags showing. Code 5 means one or more of the elements of the

complete signal is unavailable. Consequently, these are the codes of primary interest,
since they correspond directly to conditions inside or outside an area of coverage on the

COVER plots.

Table 19. VORTAC Signal Status Code.

Code Signal Status

1 Usable navigation signal received

2 OFF Flat not visible

2+  OFF Flat half visible

3 ID is audible

4 Bearing information available

D DME being received

E DME not being received

5 Usable navigation signal not received
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The VORTAC signal status was recorded as Code 1 or 5 for 170 points; these

results are compared to the COVER plots in Table 20.

Table 20. Comparisons Between Program COVER
and Flight Evaluation Signal Codes.

Predicted by COVER

Code 1 Code 5

Flight Code 1 63 37
Evaluation
Observations Code 5 18 52

Two disparities are quite obvious: first, there were 37 points where coverage was not

predicted but found to be adequate for navigation (5, 1); :and secondly, there were

18 points where coverage was expected but not found (1, 5).

The first case is of less concern since the VORTAC s are range-limited by

regulation rather than signal strength. The VORTAC navigation aids are classed

according to their operational use (Table 21). Certain operational requirements make

it necessary to use some of these aids at greater service ranges than are listed in the

table. Extended range is made possible through FAA flight inspection. Some aids also

have lesser service range due to location, terrain, frequency protection, etc.; these

restrictions are listed in the Airman's Information Manual. The published restrictions

and the range limits shown in Table 21 were implemented in Program COVER. The

Table 21. Altitude and Distance Limitations for VORTAC.

VORTAC/NAVAI DS
Normal Usable Altitudes and Radius Distances

Class Altitudes Distance (nm)

T (Terminal) 12,000 ft and below 25
L (Low altitude) Below 18,000 ft 40
H (High altitude) Below 18,000 ft 40
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fact that these range limitations are somewhat conservative is illustrated by Figure 47,
which shows a typical VORTAC signal strength as a function of range and altitude.

The 5pvolt contour is shown because the OFF flag threshold is usually set between 1

and 5Ivolt. In the fixed-wing test aircraft it was set at 1.1 2 1volt, for example.

6--

5M. VOLTS

0

I-S

0 20 40 60 80

RANGE, NM

Figure 47. Typical VORTAC Signal Strength Profile.

The sensitivity of the signal strength to range and altitude displacement is

shown as a function of range in Figure 48. It can be seen that the signal strength is

much more sensitive to altitude variation than to range variation by a ratio of about

60 to 1. Consequently, predicting the altitude of the OFF flag threshold for a given

position is more accurate than predicting the range of the threshold for a given alti-

tude. Also, small changes in altitude are more effective for improving signal strength

near the threshold than are changes in the range. This was used to great advantage in

the flight evaluation program for evaluating Program COVER line-of-sight predictions.

The second case of disparity, i.e., predicted VORTAC coverage where no

usable navigation signal was obtained, is of greater concern. However, the explana-

tion again was found to be a result of the assumptions in Program COVER relating to
line of sight (LOS) and the normal radio horizon. The equation in COVER which
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Figure 48. Typical OFF Flat Sensitivity vs. Range.

determines the LOS lower limit of the coverage assumes level terrain at the VORTAC

site (see Appendix D). Naturally this is not entirely accurate, and the flight evalua-
tion program results show that the bottom of the VORTAC coverage depends on LOS

projection across the predominant terrain features. This effect is shown in Figures 49
through 53.

These plots were obtained by flying along a designated VORTAC radial and
using alternate climbs and descents to acquire (Code 1) and lose (Code 5) usable navi-
gation signals. In every case the DME reception or loss determined the usability of the

total navigation signal. This is understandable because this signal is at a higher fre-
quency (UHF) than the VOR signal (VHF) and thus adheres more strictly to the LOS.
Altitudes were noted when the signal status changed between usable and unusable; and
these were subsequently plotted against range from the station. When these plots are
compared to the normal radio horizon generated by Program COVER, several incon-
sistencies can be seen. But when the dominant terrain profile under that radial is
introduced and the resulting LOS elevation angle is included, the corrected radio
horizon shows excellent agreement with the observed points of signal change.
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Figure 49. Sample VORTAC Coverage, Providence VOR.
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Figure 51. Sample VORTAC Coverage, Hartford VOR.
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Figure 52. Sample VORTAC Coverage, Hartford VOR.
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Figure 53. Sample VORTAC Coverage, Madison VOR.
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Applying this terrain correction technique to the 18 points where usable

signal navigation was predicted but not found, yields the results in Table 22. Fourteen

of the eighteen points are explained by the dominant terrain profile under the radial.

Two of the remaining four points are the result of skyline blockage, a more difficult

effect to analyze than terrain features. The causes of the remaining two failures to acquire

the expected signal could not be determined. Possible explanations might be: momen-

tary power interruption; saturation of DME beacon; insufficient search time for DME
lockon.

The effects of an urban skyline on the VORTAC signal were also explored

with the helicopter. The NYA S-61 was flown up and down the Hudson River at alti-

tudes of 300 feet, 500 feet, and 700 feet from a point abeam the south edge of Central

Park to a point over the Statue of Liberty. The minimum reception LOS altitude for

both LGA and JFK VORTAC's along the test route is predicted as 200 feet. This is

based on the normal radio horizon and the respective antenna elevations of the two

stations. Unreliable VOR navigation signals were observed intermittently on all runs.

Skylines clearly offer a line-of-sight disruption, but this effect is much more irregular
and unpredictable than that caused by most terrain features. While this is an obvious
conclusion, it has a significant implication for low altitude operations in the urban en-
vironment: How can low altitude routes be planned to ensure uninterrupted VORTAC

service to the RNAV equipment? This question can probably best be answered by flight
test because it is so site-dependent.

In a 1962 FAA program, a helicopter was flown over approximately this same

route segment (Ref. 58). It was equipped to measure continuous reception of the bear-
ing and DME signals from the LaGuardia and Kennedy VORTAC's. This experiment

showed that continuous usable navigation signals from Kennedy were available over
the Hudson River at and above 1100 feet. In the same area the minimum reception
altitude for the LaGuardia VORTAC was 1500 feet. The recently completed World
Trade Center on the southwestern edge of Manhattan may alter these results, but the
current flight evaluation program did not attempt to establish new VORTAC minimum
reception altitudes because no DME receiver was available on the test helicopters.

A more recent flight test was performed in the New York City area in 1972
under the DOT Transportation Systems Center STOL Avionics Program (Refs. 59, 60). A
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Table 22. Code 1/5 Summary.

Station, Radial/DME, Altitude, Elevation Minimum Reception
n (Type) (deg /nm) (ft) Angle, Altitude at This Comments Based on Terrain Study

M (mr) Point (ft)

* 1. BOS (H) 245/20.8 2000 unknown unknown City profile not available on this radial-I

2. CMK (L) 085/37.1 2000 +2.10 2441 Terrain mask

3. EEN (L) 100/18.0 2900 10.01 2885 Possible error in elevation angle
n

4. HFD (L) 119/16.3 2500 -6.36 460 Terrain definitely not a factor

z 5. HTC) (H) 337/29.1 2000 +8.95 2388 Terrain mask
6 by
6. HTO (H) 341/21.8 2000 8.95 1676 Restricted by AIM Part 4 for use below 2000ft

Ln

A 8. HTO (H) 353/39.0 2000 8.95 3518 Terrain mask

W 9. IGN (L) 149/32.0 2000 6.06 3290 Terrain maskC

z10. MAD (L) 048/32.2 2000 4.31 2021 Terrain mask
0

z 11. MAD (L) 049/33.6 2000 4.31 2150 Terrain mask

12. ORW (L) 257/39.0 2300 2.40 3121 Terrain mask

-c 13. ORW (L) 273/39.4 2000 2.19 2191 Terrain mask

14. PUT (H) 048/16.0 1000 3.32 1215 Terrain mask

15. PVD (H) 017/20.6 2000 unknown unknown City profile not available on this radial

16. PVD (H) 328/26 1600 6.51 1700 Terrain mask

17. PVD (H) 331/26 1800 6.51 1700 Possible error in elevation angle

18. TMU (T) 269/24.5 2000 '0 540 Terrain definitely not a factor



Convair 340 was flown over a similar route structure at 1100 ft MSL, with RNAV
approaches to LaGuardia,Newark and Westchester down to 500ft AGL. Dual VOR
and DME receivers were tuned to the JFK and LGA VORTAC s throughout the flight.
The VOR's gave numerous OFF flag indications, especially during the approaches.
However, the DME's operated satisfactorily, except for one unlock at 500 ft over
Newark.

Skyline blockage of signal coverage was also apparent for surveillance data
in the low passes over the proposed heliport sites during the flight evaluation of the
Boston Tango Connectors. When the test aircraft descended below the "average"
Boston skyline as viewed from the radar site, the ARTS III system reverted to a coast
mode until the aircraft ascended after the pass. More interesting was the aircraft's
passage behind Boston's two skyscrapers. Even though each is relatively slender and
stands well above surrounding buildings, radar track was disrupted each time the air-
craft was masked from the antenna.

In summary, the flight evaluation program has shown that local terrain -
including effective urban skylines - must be considered in predicting the low altitude
coverage of LOS signals. If the normal radio horizon is employed, the results will be
conservative in many cases, and insufficiently restrictive in others. This has not posed
a problem for the FAA in their VORTAC facility flight checks because those checks
are made only at CTOL IFR flight altitudes. These altitudes are above those under
consideration for VTOL operations, so the existing restrictions would need re-evaluation
for such applications.

Two procedures are available for developing feasible low altitude route struc-
tures for VTOL operations: 1) flight investigation of the areas under study to define
coverage limits; and 2) analytical models of the terrain and its effects. Initially the
first option appears to be the most reasonable. But once low altitude operations become
more widespread and flexible, this may not be economically feasible. Instead, the
terrain modeling approach may become more efficient in terms of time and fuel costs,
particularly since the flight evaluation program has shown excellent correspondence
between terrain modeling and actual LOS coverage.
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5.2.2 LOW ALTITUDE VORTAC ACCURACIES

In addition to the low-altitude signal coverage, VORTAC accuracy was also

assessed. The VORTAC bearing and DME readouts were compared to the position of

the aircraft determined visually. One problem with this technique was the inaccuracy

of the visual position locations; for example, over large wooded areas at low altitude,

visual position could not be accurately charted. Another factor is the precision of the

aeronautical charts used for reference; these are published for VFR use, are updated at

six-month intervals, and frequently show significant discrepancies from the actual

terrain.

Nevertheless, the method proved useful in assessing low altitude range and

bearing accuracies of the VORTAC signals. These results, shown in Table 23, indicate

no deterioration of accuracy in VORTAC signals at low altitudes even though they may

be received below the normal radio horizon. Similar comparisons were made between

RNAV readouts and visual waypoints when the Zulu routes were flown in cruise flight.

Table 23. VORTAC Bearing
and Range Accuracies.

Bearing Range
(deg) (nm)

Mean 0.1 -0.1

Standard
Deviation 2.7 0.7

The latter results, shown in Table 24, were much more accurate due to the continuous

tracking of the tuned station and the smoothing inherent in this process. The accuracy

shown is much better than the expected inaccuracies of visual position plotting. How-

ever, it must be stressed that the results in Table 24 represent a limited sample, and

were obtained over a specific route for the most part.

In summary, VORTAC signal accuracy does not apparently deteriorate at low

altitudes, since the results of the flight evaluation program are well within the tolerances

specified by the FAA. Consequently, the RNAV capability at low altitude can

approach the same degree of accuracy.
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Table 24. Cross-track and Along-track
Errors at RNAV Waypoints.

Cross-track Along-track
Deviation Deviation

(nm) (nm)

Mean 0.0 0.0

Standard
Deviation 0.1 0.5

5.3 VTOL INTRA-URBAN OPERATIONS

In examining the performance of current systems and their projected capa-
bilities, one aspect of the flight evaluation program involved the feasibility of NYA
providing IFR helicopter service between the Kennedy (JFK) and LaGuardia (LGA)
airports. Three levels of navigation equipment were considered:

1. Existing facilities only.
2. Addition of DME.
3. Addition of DME and MLS.

In addition, a number of innovative ideas for IFR helicopters were examined.

5.3.1 EXISTING EQUIPMENT

At the time of the flight evaluation program, NYA S-61 s were equipped with
the basic avionics shown in Table 18 without the MLS receiver. Therefore, the first effort
at determining a suitable structure between the two airports involved using a VOR radial
from one airport to find a marker beacon associated with an ILS approach to the other
airport. The ILS approach had to be one which minimized CTOL interference; i.e.,
to an unused runway or to a departure runway.

The first step was to determine the principal CTOL patterns used in the NYC
area with the aid of published instrument approaches, standard arrival and departure
routes, technical reports, and airborne observations.

Many combinations of patterns for the three major New York City area air-
ports are possible because of varying winds, the noise problem, and fluctuations in
demand; however, the preferential runway plan that has been implemented for noise
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abatement limits the number of combinations when the wind speed is below 15 knots.

This low wind condition usually exists concurrently with most of the low ceiling, low

visibility conditions in the area. Table 25 shows the preferred CTOL runway combina-

tions and the associated VTOL routes created for use during these conditions. These

VTOL routes are described in Table 26.

At the suggestion of NYA, effort was concentrated on three routes: N-5,
N-6, and N-8. Their experience has shown that these proposed routes use ILS
approaches that are available most often during NYA weather cancellation periods.
Consequently, these three routes were examined during the flight evaluation program.

N-8 was flown first (Fig. 54). Flight outbound from JFK on the 3120 radial
was timed to 8.6 nm, where the VOR receiver was switched (channel changeover) to
the LGA Runway 4 ILS frequency to intercept the localizer. A strong headwind
caused a slower groundspeed and led to an early channel changeover, but the previous
heading was held until the localizer was intercepted about a mile outside the final
approach fix. Although the turn required is 89 degrees, it was accomplished with no
difficulty, and the remainder of the approach was a normal ILS down to 200 feet AGL.

JFK
3120/8.6 NM

\o

JFK

Figure 54. Proposed IFR VTOL Route N-8.
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Table 25. New York City CTOL/VTOL Pattern Summary.*

Wind Direction Airport Runway VTOL Route No.
(Speed) Arrival Departure LGA -- JFK JFK -+ LGA

Calm JFK 4LR 31LR N-1 N-2

(0 - 4 kt) LGA 22 31

0410 - 1310 JFK 4LR 13LR N-5 N-8

(5 - 15 kt) LGA 13 4

1310 -2210 JFK 22LR 13LR N-5 N-6

(5 - 15 kt) LGA 22 13

2210 - 3110 JFK 31LR 31LR N-3 N-2

(5 - 15 kt) LGA 22 31

3110 - 0410 JFK 4LR 31LR N-1 N-2
(5 - 15 kt) LGA 4 31

*Weather: 400 ft ceiling, 3/4 mile visibility.

N-5 was flown next (Fig. 55); the outbound radial was intercepted immedi-
ately and the calculated time for channel changeover was adjusted for the tailwind.
The transition to the ILS localizer required only a 66-degree turn which was accom-
plished without difficulty. The turn increased the tailwind component dramatically,
and a rapid rate of descent was needed to acquire the glide slope; the remainder of the
approach was normal.

Next, N-6 was attempted (Fig. 56). It was interrupted before the second
turn as the helicopter was observed to be deviating substantially from the intended
track even though the VOR course indicator was centered. Visual corrections were
made to avoid the Newark Airport traffic area. Subsequently, transition to the CMK
2270 radial at a distance of 41 nm again led to questionable accuracy. Apparently,

- 159 -

AEROSPACE BYSTEMS, INC. * ONE VINE BROOK PARK * BURLINGTON. MASSACHUSETTS 01803 * (617) 272-7517



Table 26. Proposed IFR VTOL Routes Between LGA & JFK.

N-1: LGA to JFK

Air taxi over Inner Taxiway to intercept LGA 159 radial and climb outbound
on that radial to 1600 ft to overhead JFK (9.8 DME). Proceed outbound (1320) on
31R ILS to Cedar LOM: then execute procedure turn and 31R ILS approach.

N-2: JFK to LGA

After liftoff climb on a heading of 0400 to penetrate 31R departure wall and
intercept JFK 016 radial. Climb to 1500 ft and continue outbound to 5.8 DME or
radar fix for ILS Back Course approach to LGA RW 31.

N-3: LGA to JFK

After liftoff climb on a heading of 0400 to penetrate RW 31 departure wall;
then turn right to heading 0900 to intercept SAX 128 radial. Climb to 2000 ft and
proceed outbound on that radial to 42.8 DME or Jockey OM for right turn to inbound
on JFK 22R ILS.

N-5: LGA to JFK

After liftoff climb on a heading of 1900 to intercept LGA 188 radial. Climb
to 1500 ft and proceed outbound to 5.7 DME or Aqueduct OM. Turn left to inbound
on the JFK 13L ILS.

N-6: JFK to LGA

After liftoff climb on a heading of 2400 to intercept the JFK 292 radial.
Climb to 1700 ft and proceed outbound to 12.6 DME or the SAX 148 radial. Fly
inbound (3280) on that radial from 32.8 DME to 29.1 DME or the CMK 227 radial.
Climb to 1800 ft and fly inbound (0470) on that radial from the 41.4 DME to 32.5
DME or the Palisades Park LOM. Turn right to inbound on the LGA 13 ILS.

N-8: JFK to LGA

After liftoff climb outbound (3120) on the 31 L ILS Back Course to 8.6 DME on
312 radial of JFK. Climb to 1400 ft, intercept and fly inbound on the LGA 4 ILS.

- 160-

AEROSPACE SYSTEMSB INC. * ONE VINE BROOK PARK * BURLINGTON. MASSACHUBETTS 01B03 (817) 2 7 2 -7517



ALGA VOR

LGA

lo-
./

N

AQUEDUCT OM

JFK

Figure 55. Proposed IFR VTOL Route N-5.
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Figure 56. Proposed IFR VTOL Route N-6.
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the relatively long distances and uneven urban skyline produced significant bends in

the selected radials. These deviations were not completely surprising, but it had been

hoped that the more distant VOR s could support the NYA IFR operations. Once the

outer marker for the ILS to LGA was reached, this approach was discontinued.

These three flights provided several interesting results. First they affirmed

that rotor modulation of VOR/ILS signals is not a problem in the NYA S-61. Secondly,

they showed that VOR radials can be used for transition to ILS localizers if the station

is not too distant. Third, they showed that full ILS approaches waste the maneuvera-

bility and flexibility inherent in the basic helicopter design. Fourth, they demon-

strated the desirability of DME for such operations.

5.3.2 ILS AND SIMULATED DME

The second group of tests in the NYA helicopter attempted to use existing

facilities and simulated DME to examine abbreviated ILS s for IFR flights between

LGA and JFK. The midpoint of the conventional ILS final approach path at the

destination airport was connected to a radial from the VOR at the originating airport.

Thus, the new approach profile was equivalent to a normal ILS with a dog-leg at the

midpoint, of the final approach. The first half of the new approach was to be flown

along the selected VOR radial toward the ILS midpoint with the same descent gradient

as the normal approach. The initial descent point and channel changeover point were

determined by DME, which was simulated by visual reference points at specific dis-

tances from the VOR. The pilot was not authorized to descend below the normal mid-

point altitude until the ILS localizer and glide slope were being tracked. Two of

these "half-ILS" approaches were flown successfully. This technique could possibly

be used as an interim solution to the VTOL IFR approach problem when the normal ILS s

are available.

Addition of DME to the NYA fleet could also eliminate the difficulty encoun-

tered on route N-6 in using VOR radials at relatively large distances from the stations.

Instead:of using two inaccurate radials to transition from the JFK 2920 radial to the

LGA 13 ILS, a single DME arc from JFK could be used.

In addition to the half-ILS s a further attempt was made to adapt the conven-

tional ILS capability by exploring higher glide slope lobes for steeper approaches.
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Three attempts to fly such a lobe were unsuccessful in the NYA S-61; in each case,
reliable upper lobe glide slopes could not be located and/or tracked. This is probably
explained by the fact that the next stable lobe is at 90, and the glide slope beam
width at the transition altitude is only about 1/4 nm. Hence the pilot has very little
time to capture the beam. Although cases have been reported of a secondary glide
slope being successfully flown, these were initiated at higher altitudes ( -5000 ft)
where the beam width would be wide enough to stabilize on. More flight tests are
needed in this area before a firm conclusion can be reached.

Steep approaches in the S-61 pose other problems, though. The airspeed
required to maintain a suitable degree of stability produces a high rate of descent
(greater pilot workload) at angles much above 60. Evidence of this was also found in
the third group of tests which involved the microwave landing system.

5.3.3 MLS

A TALAR MLS was temporarily installed for demonstrations at the Morristown,
N.J. airport during the ASI/NYA flight evaluation program. This equipment was
used to simulate several IFR approaches in the NYA helicopters: five were flown with
a glide slope of 4.50, and four with a glide slope of 60. The basic piloting skills
required to fly the MLS are the same as for a normal ILS; however, some differences
in technique were noticed. In the standard ILS, the glide slope antenna is closer to
the touchdown zone than the localizer antenna, while the TALAR system antennas are
coincident. As a consequence, the localizer needle for the MLS appears to be more
sensitive than for a standard ILS. Slower airspeeds were used in some approaches to
reduce the apparent needle sensitivity, but a definite tradeoff between workload
associated with maneuvering the vehicle and that associated with keeping the .needles
centered was noted. The optimum airspeed appeared to be around 60 knots in the S-61
for both the 4.50 and 60 glide slopes.

The most impressive feature of the MLS demonstrations was the flexibility
offered for VTOL operations. With this equipment the IFR routes described earlier
could be made nearly direct, since the approach centerlines could be arbitrarily aligned
for the helicopters' convenience. Moreover, the TALAR antenna could conceivably
be mounted on a turntable to accommodate sequenced approaches from different
directions.

- 163-

AEROBPACE SYSTEMS, INC. * ONE VINE BROOK PARK * BURLINGTON, MASSACHUSETTS 01803 * (617) 272-7517



The TALAR MLS localizer signals cover a sector approximately 30 degrees on

either side of the approach centerline. The receiver antenna pattern is approximately

65 degrees on either side of the longitudinal axis of the aircraft; the vertical limits are

18 degrees above and below the horizontal plane. These limits were explored by

observing the appearance and disappearance of the Glide Slope and Localizer OFF

flags on the MLS cockpit indicator during the flight program. Table 27 shows the

azimuth coverage observed during the flight evaluation program. The coverage exceeded

the anticipated coverage in every case. The values were recorded with the station

well within the receiver antenna pattern angle. Three points were measured on the

north side of the centerline and three were obtained on the south side. The limit was

defined as the point where the flag status changed. In all six cases the two OFF flags

changed simultaneously.

Table 27. TALAR Azimuth
Coverage in Degrees.

North Side South Side

54 A* 44 A

49 D** 35 D

69 A 45 A

*A OFF flags Appeared.
**D OFF flags Disappeared.

Table 28 shows the horizontal coverage of the receiver antenna observed

during turning tests conducted within +200 of the centerline. In these tests the flags

tended to disappear together at the limit, but the localizer flag reappeared at a

greater "look" angle than the glide slope flag. In attempts to check the vertical

limits of the receiver antenna, aircraft pitch angles of 20 degrees down and 25 degrees up

produced no apparent signal loss. These results show that the TALAR coverage is greater

than that of a standard ILS; and, hence, more suitable for larger localizer interception

angles and higher glide slopes which are preferable for VTOL operations.

5.3.4 INNOVATIVE CONCEPTS

The fourth major flight test area involved descending spirals in the NYA

- 164 -

AEROSPACE SYSTEMS, INC. - ONE VINE BROOK PARK BURLINTON, MASSACHUSETTS 01803 * (617) 2727517



Table 28. MLS Receiver Antenna Limits in Turns.

Left Look Right Look

Localizer OFF Flag Glide Slope OFF Flag Localizer OFF Flag Glide Slope OFF Flag

167 A RT* 137 A RT 133 D RT 133 D RT
163 A RT 127 A RT 145 D RT 145 D RT
99 D LT** 99 D LT 93 D RT 93 D RT

119 D LT 119 D LT 121 D RT 121 D RT

* in right turn.
** in left turn.

helicopters. This maneuver and its potential application have already been discussed
in Section 2. In the flight evaluation program, the workload and ride quality asso-
ciated with the execution of descending spirals were examined. The parameters were
varied as shown in Table 29. Finally, some spirals were combined with the MLS
approaches.

Table 29. Spiral Descent Parameters.

Bank Descent Airspeed Altitude Turn
Angle Rate Ai(ktspeed Change Radius
(deg) (fpm) (ft) (ft)

9 500 60 1000 2690

9 1000 60 1000 2690

20 500 80 1000 1558

30 500 80 1000 983
20 1000 80 1000 1558
30 1000 80 1000 983
18* 500 80 1000 1745
30* 1000 80 1000 983

*These spirals were followed by transition to an MLS
approach.
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The workload assessments were based on qualitative comments from the pilot,
who felt that none of the spirals was overly difficult to perform. Of most concern was

the increased uncertainty of position and orientation at the completion of the maneuver.

This result supports the need for the development of spiral guidance laws and algorithms

for automatic control or flight director commands. Transition to the MLS approach at

the end of a spiral offered no unusual problems either. The pilot simply leveled off at

the proper altitude after the spiral descent and continued the turn (if necessary) to

acquire the MLS signals and then intercept the localizer and glide path.

The ride quality associated with the spirals was measured both qualitatively

and quantitatively. The qualitative assessment, provided by members of the investi-

gative team riding in the passenger compartment, was that no uncomfortable sensations

were experienced during the spirals or the recoveries. The quantitative evaluations of

ride quality are being conducted by the University of Virginia (under separate contract

with LaRC), who recorded accelerometer outputs during the MLS evaluation flights.

The results are not yet available, but will eventually provide a preliminary, quanti-

tative evaluation of the spiral descent for commercial VTOL operations.

5.4 SPECIAL LOW ALTITUDE OPERATIONAL FACTORS

The desirability of low altitudes for VTOL operations has been discussed in

Section 2. An effort was made during the flight evaluation program to examine poten-

tial operational problems associated with such flight. Three special considerations

which could affect flight safety are terrain and obstacle clearance, CTOL encounters,
and pilot workload. Qualitative assessments of these considerations were obtained
during simulated IFR flights along the Zulu Airways and by simulated IFR and VFR
flights along the Tango Connectors.

5.4.1 TERRAIN AND OBSTACLE CLEARANCE

Terrain and obstacle clearance is a paramount consideration in basic route
planning. Altimetry and navigational accuracies can be employed to determine
minimum altitudes in the vicinity of charted terrain and obstacles, but the result will
be only uas good as the charts themselves. Although such information is reasonably

accurate for terrain features, shortcomings in obstruction data often occur due to the
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lag between the completion of an obstruction and its appearance on a new chart edi-

tion. Naturally, any low altitude airways would require careful flight checks

periodically to ensure safe obstruction clearance.

As an example of this lag, a large smokestack was observed near the proposed

heliport site during the first flight along the Boston Tango Connectors. Although the

current chart showed only a 345-foot obstruction at the location, subsequent investi-

gation revealed that a new stack was completed in summer 1973, and reached to a

height of 537 feet MSL. New maps for which corrections have been noted as a result
of this flight evaluation program are scheduled for publication in June 1974; thus, a
one year lag is evident in publishing this 200 ft change in height.

In the urban environment, it is not uncommon for a temporary or mobile ob-
struction to arise near a landing site and penetrate the safe clearance criteria. A
typical example was observed during one approach to the Wall Street Heliport, when
a barge with a tall crane (approximately 100 ft) had docked just north of the landing

pier. Although the crane offered no danger to normal visual approaches, it undoub-
tedly would have violated the clearance criteria for a projected IFR missed approach
path. A second approach to the landing site, for worst case wind direction, missed
the top of the crane by approximately 150 feet laterally and 20 - 30 feet vertically.
Again, the margin of safety was sufficient for daylight visual flight, but it would have
been significantly decreased for an IFR or a night-time approach.

5.4.2 CTOL ENCOUNTERS

VTOL operations at low altitudes will undoubtedly encounter other uncon-
trolled aircraft (both fixed-wing and rotary-wing) more frequently than at high
altitudes due to the higher activity of general aviation. Since regulations forbid
aircraft operations in controlled airspace without authorization during IFR weather,
the low altitude IFR VTOL operation could be conducted with a sufficiently high degree
of safety. However, during VFR weather and outside of controlled airspace, that
assurance cannot be guaranteed. Numerous sightings of other aircraft at low altitude
during the flight evaluation program support the contention that some form of proximity
alerting device will be necessary for the required safety levels on these low altitude
routes.
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5.4.3 PILOT WORKLOAD

Onthe Zulu routes, pilot workload associated with RNAV and low altitude
flight was not difficult since a three-axis autopilot with altitude hold was used. The
RNAV waypoints were usually about ten minutes apart; selection of a new waypoint
required an average of twenty seconds to change VORTAC frequency and/or the way-
point definition. Another 20 - 30 seconds was used by the pilot to identify the VORTAC
station and verify the waypoint definition. This second time span followed the first,
but not immediately. Then the pilot spent a few moments looking for agreement between
the RNAV readouts and the heading and distance shown on the flight plan for the next
waypoint.

The flight evaluation program did reveal the susceptibility of the crew to way-
point definition errors. For the majority of actions taken by a pilot to adjust his navi-
gation and guidance aids, he receives some kind of feedback for verification (e.g.,
Morse code identification, a mode-select light, appearance of steering needles).
However, this feedback is generally lacking in RNAV waypoint definition; i.e.,
inserting in a particular radial and distance. The only cross check available is for
the pilot to compare his knowledge of the bearing and distance to the desired waypoint
with the RNAV readouts. Of course, he can double check the RNAV inputs for the
correct parameters, but that is certainly not error proof.

During the early stages of the flight evaluation programsome waypoint defini-
tion errors occurred by accident. Most were caught through the check and double
check technique, but two were discovered only when the visual position plot began
diverging from the charted course. This indicates a need for some type of feedback to
the pilot once he has entered a waypoint into the RNAV system.

Flights along the Tango Connectors and flights in the intra-urban environment
produced greater pilot workloads because of the departure and arrival maneuvers, the
shorter time intervals between waypoints, and the increased communications workload..
However, more advanced RNAV equipment would undoubtedly provide multiple way-
point storage and automatic switching, thus relieving the pilot of these tasks under

I _ i...normal conaditions. Furthermore, communications procedures would become routine and,
hopefully, independent of CTOL operations. Nevertheless, for short intra-urban routes,
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continuous helicopter IFR operations may have to consider fatigue as more'of a limiting

factor than it is for CTOL IFR operations. Since elementary stages of fatigue affect

response time more than accuracy of performance, it would be more of a factor during

inflight anomalies than during normal operations. Consequently, fatigue as a product of

workload versus time can be a significant consideration in low altitude operations.
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SECTION 6

CONCLUSIONS AND RECOMMENDATIONS

This section presents a summary of the principal results and conclusions of

the study and brief discussions of several areas which have been identified as poten-

tial candidates for additional research.

6.1 CONCLUSIONS

Navigation requirements have been identified for commercial VTOL operations

providing inter-urban, intra-urban and conventional airport services. The major gene-

ral requirement is that it must provide the information, accuracy, coverage, and

reliability to permit VTOL operations independent, or essentially independent, of

conventional fixed-wing traffic. Consequently, the navigation system must have area

navigation capability and permit all-weather operation to at least the same minima as

most conventional traffic.

Proposed IFR approach categories have been defined for VTOL aircraft which

recognize the unique capabilities of such vehicles. Thus, weather permitting a VTOL

Category I approach would require a CTOL Category II approach. However, most

commercial operations probably would not require VTOL Category II capability, and

even fewer would need VTOL Category III. The equipment costs (ground and air, for

both installation and maintenance) and the costs ofm aintaining pilot proficiency would

generally not be justified by the very small number of cancelled flights they would

avoid.

The feasibility of low-altitude, RNAV routes has been established for commer-

cial VTOL services in the Northeast Corridor. A set of typical one-way, inter-city

'Zulu' airways and associated 'Tango' transition routes has been defined between the

Boston, New York City and Washington, D.C. metropolitan areas. These routes

permit nearly direct service (significantly shorter than the existing "preferred," low

altitude Victor airways for conventional IFR traffic) beneath the conventional traffic

and provide continuous VORTAC navigation coverage. Furthermore, they avoid con-

gested noise-sensitive areas, obstacles and major CTOL aerodromes. The flight

evaluation program subsequently verified the practicality of these routes for independent

VTOL operations.
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The existing VORTAC system has been demonstrated to provide satisfactory

enroute and terminal area navigation at low altitudes over most of the routes studied.

A VOR/DME, general-aviation RNAV system with single waypoint entry exhibited

surprising accuracy in the flight evaluation program. Although the flight program was

relatively limited, the results indicate that even simple RNAV equipment can provide

the necessary navigation accuracy. More elaborate systems using dual DME and having

multiple waypoint storage would significantly improve the accuracy and would substan-

tially reduce the associated pilot workload.

Analytical predictions of line-of-sight signal coverage were verified by the

flight evaluation program. A computer program (COVER) was developed to generate

line-of-sight coverage overlays for aeronautical charts. These predictions, which did
not include local terrain effects, were shown to be reasonably accurate - usually
conservative - by the flight evaluation data. Post-flight analyses of the results using
local terrain contours indicate excellent agreement between the predicted and observed
signal coverages.

An omnidirectional approach capability is not generally necessary for VTOL
operations. Crosswind approaches and landings do not pose a problem for rotorcraft;
however, a tailwind cannot be tolerated, principally because of the vortex ring state.
Consequently, all wind directions can be accommodated with a minimum of two
approach directions. Furthermore, the surrounding geography at a specific site will
nearly always impose constraints on the approach and departure paths for noise abate-
ment and obstacle clearance. In addition, the VTOL route structure will establish a
finite number of approach directions from the other heliports served. Finally, discrete
3D or 4D transition RNAV routes will undoubtedly be required to achieve independence
from the CTOL traffic.

On the other hand, curved decelerating approaches will be required for safe,
efficient, and independent VTOL operations. A spiral descent technique has been
proposed as a possible standard VTOL approach procedure. The spiral descent uses
minimal airspace, accommodates arrivals from any direction, and can service multipad
li..... ... e spiralu approach also provides the features of a vertical descent, but

avoids the vortex ring state, maintains a stable airspeed, and uses less fuel. Flight
evaluations conducted for several spiral descents have demonstrated their feasibility
in terms of ride quality, vehicle capability and pilot workload.
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The flight evaluation program has shown that limited helicopter IFR operations

are feasible in the New York City area with existing navigation equipment (VOR,

DME, ILS, marker beacon, transponder). These operations can be established with

VOR radials, DME arcs, ILS localizers and abbreviated ILS approaches to runways not

in use for CTOL arrivals. Such procedures can provide reasonably efficient helicopter

service between LGA and JFK to CTOL Category I minimums, with little interference

to CTOL traffic. The addition of RNAV and MLS to the existing equipment would

permit reliable, nearly-independent VTOL operations in the New York City area,

between the principal CTOL airports and other heliports such as Wall Street.

A multi-configuration, straw-man navigation and guidance system was

developed for future commercial VTOL operations with advanced rotorcraft. This

system allows the formulation and evaluation of a variety of avionics system configura-

tions. A baseline hybrid navigation system using INS, DME and MLS data was selected

as the most likely candidate for the 1980 s time period. This system uses a low-cost

INS with DME updating in the enroute and terminal phases, and combines INS and

MLS information for the approach and landing phase. The hybrid navigator provides

increased accuracy and greater reliability by combining redundant navigation infor-

mation from separate sensors. A recursive filter is used to generate the optimum posi-

tion and velocity estimates for a velocity-command guidance and control system.

The straw-man design also provides for the possible utilization of VLF inputs

for enroute/terminal navigation, and for a multilateration ranging system in the approach/
landing phase. Thus, the multi-configuration system provides maximum flexibility for

alternate applications (e.g. remote'areas), and increased adaptability for equipment

modifications. Other straw-man system inputs include air data, radar altimeter and

a 4D RNAV flight plan. A weather radar allows the pilot to modify the flight plan

for increased safety and passenger comfort. A key element of the recommended straw-

man system is an onboard traffic situation display (TSD) which provides an independent

capability for ensuring airborne separation from other traffic, including other VTOLs as

well as CTOLs or STOLs. The TSD requires position information on all proximate air

traffic, which could be provided by DABS or Syncho-DABS, or an air-derived collision

avoidance system.
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To evaluate the straw-man navigation system, a digital computer simulation
program (VALT) was developed and demonstrated on the LaRC CDC 6400/6600 computer
facility. Program VALT is a flexible tool for analyzing the'performance of candidate
VTOL navigation and guidance systems and evaluating various rotorcraft and operational
constraints. Error models were developed to represent the actual navigation sensors
(INS, DME, air data, etc.), and a linear Kalman filter was designed to calculate the
optimum error estimates for a set of simpler, estimator-assumed error models.' A simple
perturbation scheme was developed to provide path guidance about a desired nominal
flight plan. The guidance system produces velocity correction commands to a velocity-
command flight control system, which is based on an earlier NASA-designed system for
the CH-46 helicopter. A new point-mass dynamic model was developed to simulate
the translational motions of a pure or compound.helicopter. Program VALT will be
extensively utilized in the second phase of the study for parametric investigations to
examine the effects of sensor and subsystem errors, and alternate system configurations.

6.2 RECOMMENDATIONS FOR ADDITIONAL RESEARCH

During the course of the study, several areas have been identified in which
additional research is needed to advance the navigation and guidance system tech-
nology for commercial VTOL operations. These subject areas are outlined below:

* FILTERING TECHNIQUES FOR VTOL NAVIGATION

The configuration and associated algorithms to be implemented in the naviga-
tion system estimator require further analysis, particularly the tradeoffs among accuracy,
computing efficiency and simplicity. Program VALT provides an ideal tool to evaluate
the performance of candidate optimum and sub-optimum filters in terms of accuracy,
computing time, program complexity, capacity requirements, and stability. The
results should be analyzed to determine the relative advantages and disadvantages of
each candidate, and one or more techniques should be recommended for evaluation in
the NASA VTOL flight test program.

* SPIRAL DESCENT GUIDANCE FOR VTOL OPERATIONS

The navigation and guidance system requirements should be determined for IFR
VTOL spiral descents in the presence of winds. The study should: establish recommended
values for airspeed, bank angle, descent rate and protected airspace; formulate a number
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of feasible guidance laws for spiraling flight; and develop filtering algorithms for

navigation during this phase. The guidance and navigation algorithms could be evalu-

ated with Program VALT. The necessary commands to display on a flight director and/or

the signals to feed an automatic pilot should be established. Finally, one or more

spiral guidance laws should be recommended for further evaluation in the LaRC VTOL

real-time simulation, and eventual implementation in the VTOL flight test program.

* RNAV/MLS FLIGHT EVALUATION

A flight program should be conducted to provide a realistic evaluation of the

use of RNAV and MLS for helicopter operations in the intra-urban/conventional airport

services. A carefully organized parallel approach could provide the most beneficial

results. On one hand, authentic operational data with existing equipment could be

obtained by a relatively low-cost joint ASI/NYA effort that would extend the flight

evaluation conducted under Phase I of this contract. The RNAV and MLS equipment

would be obtained on a lease or demonstration basis and the airborne units installed

in an NYA S-61 helicopter. Working closely with the FAA, a set of RNAV routes and

MLS approach procedures would be devised for the New York City area to provide

minimum interference with existing CTOL traffic. The resulting system would be flight

evaluated under simulated IFR conditions for operational feasibility. At the same time,

further ground-based analysis should be performed using both fast-time and real-time

simulations to refine the navigation requirements for advanced systems that would

eventually be evaluated in the NASA VTOL flight test program. Both elements of the

investigation would draw heavily on the outputs of the present study, and each would

provide valuable inputs to the other. The successful completion of such a program

would unquestionably provide a significant advancement toward the eventual goal of

the VALT project.

* FLIGHT EVALUATION OF VLF NAVIGATION SYSTEMS FOR VTOL

The use of VLF navigation (including Omega or Loran) for VTOL could provide

unrestricted low altitude coverage with little or no station switching necessary. A

flight evaluation program, similar to that described for the previous recommendation,

should be conducted to examine the feasibility of low frequency RNAV for commercial

VTOL operations. Terminal phases could be tested with an NYA S-61 helicopter; a low-

- 175 -

AEROSPACE BYSTEMS, INC. * ONE VINE EROOK PARK * BURLINGTON, MASSACHUSETTS 01203 * (e17)272-7617



cost, fixed-wing aircraft could be used to obtain data appropriate to the enroute phases

of commercial helicopter routes. The static and dynamic accuracy of the low frequency

system would be determined by airborne recording of the indicated position as compared

to visual checkpoints, ILS localizer or ground radar. Comparisons of coverage, aircraft

maneuver effects, signal loss, pilot workload, accuracy, etc. would be made. Analy-

tical models would be formulated and evaluated with fast-time and real-time simulations

to provide comparisons with the operational results, and to suggest VLF implementations

in the NASA VTOL flight test program.

* NAVIGATION AND TRAFFIC SITUATION DISPLAY FOR VTOL

A key element in the proposed VTOL straw-man navigation system is a

Traffic Situation Display to visually display to the pilot the immediate air traffic

environment and to assist him in navigation and precise spacing and merging. Con-

siderable work has been done at MIT, NASA/LaRC and elsewhere on experimental TSD

simulations for CTOL aircraft. A research program is recommended to evaluate a TSD

for a helicopter in an independent VTOL environment; this could be achieved by minor

modification of the existing MIT or LaRC TSD simulation facility. The rotorcraft

equations of motion developed under the current contract would be incorporated into

the TSD simulation in place of the present Boeing 707 model. The simulation would

utilize a velocity-command control system similar to the one used in Program VALT.

A commercial helicopter scenario would be included in the existing simulation (includ-

ing Zuly routes, Tango connectors and helicopter terminal approach procedures).

These would be presented on the display relative to the navigation coordinate grid

centered at the simulated helicopter position. Simulation studies would examine the

effects of navigation coverage, pilot workload, traffic sequencing and spacing, con-

flict avoidance, and guidance commands. Both VTOL and CTOL air traffic should be

simulated to investigate the ability of a single helicopter to operate in the high density

mixed environment with the proposed system.

* IMPROVED ANALYTICAL COVERAGE PREDICTIONS

Results of the flight evaluation program have shown excellent agreement with

the analytical predictions of line-of-sight signal coverage generated by Program

COVER, when the local terrain is taken into consideration. A very accurate and
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useful tool could be developed for prediction of low-altitude signal coverage by
modifying Program COVER to include these terrain-effects. This could be accomplished
by examining the terrain surrounding the ground stations, either visually or by reference
to topographic charts, to determine the line-of-sight elevation angle to the terrain
horizon as a function of azimuth angle. The data could then be utilized in the cover-
age calculations in much the same way as the published FAA restrictions are presently
handled. The resulting program would be a valuable aid for defining low altitude VTOL
routes, for selecting the optimum stations to be used for each segment of a route
(discussed below), and for establishing the need for additional ground stations and their
suggested locations.

The baseline straw-man navigation system uses DME updating of a low-cost
INS for the enroute and terminal area phases of flight. The overall accuracy of this
system therefore depends upon the relative geometry, accuracy, and frequency of the
DME measurements, which are limited by the line-of-sight signal coverage. A com-
peting factor is the desire to minimize, or at least limit, the number of DME channel
switches to reduce pilot workload, search and lock-on delays and computer storage
requirements. Program COVER could be modified and extended to automatically
schedule the optimum DME station selections along the flight path. The coverage
calculations, corrected for terrain effects, would indicate the stations available for
navigation, and the relative geometry for each of these would be examined to determine
the combinations for best accuracy (ideally taking the previous measurement histories
into consideration). Finally, the program would evaluate the number and frequency of
channel switches, and the number and utilization of the stations selected, to generate
an optimum DME measurement schedule.

* FUEL ECONOMY IN COMMERCIAL VTOL OPERATIONS

The energy shortage is dictating careful evaluation of the amount of fuel con-
sumed by various forms of transportation. In the past, the case for VTOL has been
justified principally on the basis of saved time; in the future, it will be necessary to
weigh fuel economy more heavily. Consequently, the feasibility of commercial VTOL
operations will depend on the ability of the VTOL to economize on fuel relative to
previous non-fuel-constrained operations, as well as vis-a-vis the CTOL and other
transportation forms. A comparative study of the fuel economy of the helicopter
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relative to conventional aircraft and other competitive transportation forms should be

conducted, including optimization analyses of helicopter operations using fuel instead

of time as the cost function. The impact on VTOL fuel consumption of each of the

operational constraints identified in the present study should be evaluated. Specific

existing and proposed rotorcraft should be analyzed for fuel saving operational pro-

cedures, such as spiral descents. The study should investigate the sensitivity of

helicopters' operating costs to the cost of fuel, and examine the influence of fuel

economy on VTOL guidance and navigation requirements.
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APPENDIX A

POINT-MASS VTOL DYNAMIC MODEL

This appendix describes the mathematical model developed to represent the

dynamics of the rotorcraft for the navigation system analyses. For simplicity, a point-
mass model was selected over a full six- degrees-of-freedom representation. The
navigation and guidance systems are concerned with the position and velocity of the
aircraft center of mass (c.m.); the higher-frequency attitude motions about the c.m.
are controlled by the flight control system inner loops and are above the bandwidth
of the navigation and guidance systems.

A.1 REFERENCE FRAMES

The analysis of VTOL navigation requires the precise definition of several
coordinate frames. Each of the five frames defined below is an orthogonal, right-
handed coordinate frame. The nomenclature follows that of Britting (Ref. 61). The
relationships between the various coordinate frames are given in terms of the relative
angular velocity (m) and the coordinate transformation matrix (C) between the two
frames.

A.1.1 INERTIAL FRAME (i Frame; x, y, z Axes)

The inertial frame is defined as having its origin at the Earth's center, as
illustrated in Figure 57. The x and y axes lie in the equatorial plane and the z axis
is coincident with the Earth's axis of rotation. For the purposes of the present study,
the rotation of the Earth is neglected in the equations of motion; hence, the inertial
frame is an Earth-fixed frame. The axes are arranged such that the inertial reference
meridian is coincident with the local meridian at the navigation starting time:

I = terrestrial longitude from Greenwich

o = initial terrestrial longitude = inertial reference meridian

A.1.2 GEOGRAPHIC FRAME (n Frame; N, E, D Axes)

The geographic frame is a local navigational frame which has its origin at
the vehicle's c.m. and its axes aligned with the North, East, and Down directions.
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EARTH AXIS OF ROTATION

Z
Xh

INERTIAL REFERENCE MERIDIAN N
Yh

GREENWICH MERIDIAN

D LOCAL MERIDIAN

Zh

L

Figure 57. Coordinate Frame Geometry. (N, E, D) - Geographic;
(x, y, z) - Inertial; (xh, Yh, zh) - Level Heading.

The earth is assumed to be spherical, and Down is coincident with the local vertical.
The North and East axes are in the local horizontal plane (Fig. 57).

The inertial-geographic coordinate frame relationships are:

Wn = [e cos L, - L, - A sin LIT (69)in

Si = [L sin A, - cos A, 1]T (70)

-sin L cos A, - sin 6a, - cos L cos Al

Cn = -sin L sin A, cos A 1, cos L sin A (71)

cos L , 0 , - sin L

where A = l - 1o = change in terrestrial longitude from start of navigation (t = 0)

L = geographic latitude.
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A.1.3 LEVEL-HEADING FRAME (h Frame; xh, Yh' zh Axes)

The level-heading frame is a body-fixed frame which has its origin at the

vehicle c.m. and its z axis coincident with the Down axis of the geographic frame.
The x axis is rotated about the z axis away from North by the aircraft heading angle

*. Thus the x axis is the projection of the aircraft's longitudinal body axis onto the

local horizontal plane. This frame is convenient for describing the rotor forces acting
on the vehicle (Fig. 57).

The relationships betwen the level-heading and geographic frames are:

Wn h h = [0, 0, T (72)

cos *, -sin , 01

Cn =  si n , cosi, O0 (73)
0, 0 ,1

A. 1.4 BODY FRAME (b Frame; R, P, Y Axes)

The Body frame constitutes the familiar vehicle axes of yaw, pitch, and roll
which has its origin at the vehicle c.m. As illustrated in Figure 58, the roll axis
points forward, the pitch axis points out the right-hand side, and the yaw axis points
down, all with respect to the vehicle.

The relationships between the geographic and body frames are determined by
the rotation sequence: yaw, pitch and roll.

wnb = [ sin 9, r cos e sin 0, f cos 9 cos ¢]T (74)

cos J cos 9, cos i sin e sin 0 - sin i cos 0, cos i sin e cos 0 + sin 4r sin

Cn = sin r cos 9, sin i sin 0 sin 0 + cos *cos 0, sin * sin 8 cos 0 - cos *sin 0 (75)

-sin9 , cos 8 sin , cos a cos J
where i, e and ¢ are the yaw (or heading), pitch, and roll angles. The attitude rates
e and 0 have been neglected for navigation and guidance analyses.
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Figure 58. Body Coordinate Frame (R, P, Y Axes).

A.1.5 STABILITY FRAME (s Frame; xs, Ys' z Axes)

This is a body-centered reference frame which has its xs axis aligned with
the relative wind vector, V. It is obtained from the geographic frame by an azimuth

rotation X and anelevation rotation y (Fig. 59). The transformation matrix is

cos X cos y, -sin Xi, cos X sin y

Cn = in X sin y, cos k, sin X sin Y (76)

-sin y 0 , cos y

The relationship between the stability frame and the body frame Is expressed
in terms of the angle of attack c and the sideslip angle B (Fig. 59):
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D Zs  a XsaS a

Figure 59. Relative Orientations of Geographic (N, E, D), Stability
(xs' Ys, z), and Body (xb) Frames.

cos a cosB, cos a sin B, -sin a

Cs = -sin , cos , 0 (77)
sin a cos B, sin a sin t, cos a

A.1.6 WIND EFFECTS

The velocity of the local air mass is defined in the geographic coordinate
frame:
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"N

W

W n VE (78)

Thus, the speed of the aircraft relative to the air mass is given by

VN - W N
Vn = Vn - Wn = VE -W E  (79)

VD - W D

The azimuth and elevation angles which define the stability coordinate frame

in Figure 59 are now found to be

X = tan- (VE/VN )  (80)

y = tan- (-VD/V + V ) (81)

The angle of attack ca and sideslip angle p can now be determined, since

Vn = Cn Vs = Cbn C s (82)

The results are

sin ( = sin e sin ¢ cos y cos(I - X) - cos 0 cos y sin (i - x)

- cos e sin ¢ sin y (83)

sin cy = [sin e cos 0 cos y cos(*I - X) + sin 0 cos y.sin(/ - x)

- cos e cos 0 sin yl/cos B (84)

A.2 EQUATIONS OF MOTION

The equations of motion for the VTOL dynamic model are written with
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respect to the Earth-fixed inertial reference frame, in terms of the vehicle's latitude,

longitude and radius from the Earth's center:

L = - 2Lh - r2 sin L cos L) (85)

1 FE 2
S- + 2 r I L sin L - 2 h " cos L (86)

h=r L2 2 cos2L F (87)

where

r = r° + h (88)

and ro is the mean radius of the earth (~3438 nm). FN, FE, and FD are the external
forces acting on the vehicle.

The components of velocity in the geographic frame are

VN = rL (89)

VE = rcos L 1 (90)

VD = -h (91)

For simulation purposes, the equations are more conveniently expressed in terms of the
geographic frame. Differentiating Eqs. (89 - 91) and using Eqs. (85 - 88) we obtain:

FN 2
V N +- (VNVD -V tan L) (92)

FE VE
VE m +  (VD +VN tan L) (93)
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V D 1 (V2 2 (94)
DmrN E

The position coordinates are obtained by using Eqs. (89 - 91):

. VN
L - (95)

. V E

a V (96)r cos L

h= -VD (97)

Thus, the six equations which must be integrated to determine the aircraft's position

and velocity components are given by Eqs. (92 - 97).

A.3 ROTORCRAFT EXTERNAL FORCES

The external forces acting on the rotorcraft consist of aerodynamic, propul-

sive, and gravitational forces. For the pure helicopter, the non-gravitational forces
are due to the rotor and airframe. The compound helicopter has additional forces
due to the wing and the auxiliary propulsion system.

A.3.1 ROTOR FORCES

The components of rotor force are the thrust T, defined as perpendicular to
the tip path plane of the blades; and the longitudinal and lateral forces H and Y,
defined as parallel to the tip path plane. The tip path plane is inclined to the
vertical axis of the level-heading frame by a pitch angle P1 about yh' and a roll angle

P2 about xh (Fig. 60).

Considering the rotor blade element shown in Fig. 61, the elemental lift is
given approximately by

dL- o ac U - dr U < UT (98)
. L  UTJp T
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h 
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Figure 60. Rotor Forces.

where UT = 0 0 sin *

Up = xR + (r -eb) +tx0 P cos 4

S= 0 +1 cos + 2 sin + tan 683
and p = air density

a = blade airfoil lift curve slope

c = blade chord

r = radial location of blade element

Q = rotor rotational speed

R = rotor radius

The rotor advance ratio and rotor inflow ratio are given by
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4 C,

Up

UT
Xh -Yh PLANE

SECTION A-A

Figure 61. Rotor Nomenclature.

xyz rotor advance ratio = z(99)

C
A = rotor inflow ratio = - + T(100)

and
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s = V - A /x,y,z x,y,z x,y,z

AVx,y,z = components of wind velocity along xh, Yh' zh axes

eb = radial location of blade flapping hinge

B = blade flapping angle with respect to xh - Yh plane

= blade azimuth angle

O = blade pitch angle with respect to xh - Yh plane

83 = blade pitch-flap coupling parameter

The rotor thrust is given approximately by

2n R

T pn R2 (2R) 2 CT -b2 I f L dr d* (101)

where b = number of blades

thus

CT T [2 0  1 + 4-2 x - (102)

where a = rotor solidity = b

Substituting the value of 82 required for trimmed flight (which will be derived in Section

A.4), the expression for thrust coefficient becomes

a 322x C B - x D
C T e0 1 x -0 B3 2 D 3 2DB+ xD B+ xD

1 2

+ xB1 B2 tan 3 (103)
B + T x D

where the quantities A, B, C and D are defined in Section A.4.
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The rotor longitudinal and lateral forces H and Y will be approximated by

considering profile drag effects only. Induced drag effects are small even at low

flight speeds. Again considering the blade element, the elemental profile drag is

given by

dD - pac U CD dr (104)
0 2 o

where CD = blade airfoil mean drag coefficient
o

thus

H A pR2 (QR)2 CH f2 R sin 4 dr d* (105)

0 0

Integrating and multiplying by 1.8 to correct for radial flow,

CH 0.45aC D Px (106)

Similarly, for motion in the direction of the yh-axis,

Y prR2(0R)2 Cy (107)

Cy 0.45cC D 0y (108)

A.3.2 AIRFRAME FORCES

The components of airframe parasite drag are

D = 1 v-2 (109)x x 2 x

r =f • /2 (,1
y y 2 "y a
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Dz 1 z 2p ( R)2 (111)

where fx = equivalent flat plate areas of airframe, including wings (if any).

On compound helicopters, the wings produce lift L and induced drag D..
These forces are given by

L 1 p(V2 + V2 ) Sa ce (112)
2 x z w

D. = 2 2 (113)
b ~nep (V+ Vy)

x y

where S = wing area

aw = airframe lift curve slope

a = angle of attack of airframe zero lift line

b = wing span

e = Oswald efficiency factor

A.3.3 PROPULSIVE FORCE

The auxiliary propulsive turbofan on a compound helicopter produces a

thrust force P which varies with throttle setting and flight speed. We shall assume that
such a turbofan engine maintains constant thermal efficiency, turbine inlet tempera-
ture, fan rotational speed, and exhaust static pressure during changes in flight speed
at a constant altitude and throttle setting. Then the static thrust can be written as

Po =  moV (114)

where rl = throttle setting

m = mass flow of engine at rest

v° = exhaust velocity of engine at rest

For a unit weight of air passing through the fan, an energy balance gives
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CpT 1 + Cp(T2 - TI) = CpT3 + (115)

where T = ambient static temperature (absolute)

T2 = turbine inlet temperature (absolute)

T3 = engine exhaust temperature (absolute)

For the engine at speed V relative to the air mass

CpT I + Cp(T2 - T1) + I = CpT3 + v2 (116)

2 1/2
where v = exhaust velocity at speed = (V + )1/2

thus

v2 = + Vo (117)

The thrust of the engine at speed V is

P = r (v - 9) (118)

where m = mass flow of engine at V

Since a turbofan engine is essentially a constant volume pump, m remains approxi-
mately constant at a fixed throttle setting from rest up to moderate flight speeds at
a given altitude. Therefore

P m [( V2 + v 2 )1/2 - (119)

At a given flight speed and throttle setting, engine thrust is approximately
proportional to air density as altitude or ambient temperature varies.

A.3.4 RESULTANT FORCES

SThe components of the total external forces are desired in the geographic
frame for Eqs. (92 - 94). This is accomplished by a vector summation
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FN -H cos b1 - T sin B1 + Dx

Fn = FE C= Cn H sin P1 sin 2 -Ycos2 +Tcos B1 sin 2 +D

FD -H sin p1 cos P2 - Y sin B2 -TcosB1 cos p2+mg+D z

-D. P cos i

+ K C' 0 + C 0 (120)

-L P sin i

0, for pure helicopter
where K =

SI, for compound helicopter

i = inclination of thrust centerline above aircraft longitudinal axis.

A.4 ROTOR BLADE FLAPPING MOTION

Consider the hinged blade shown in Figure 62. The aerodynamic moment

about the flapping hinges in undisturbed equilibrium flight is

MA= ac UR U ) (r - eb) dr (121)
MA 2 - eaf T T( b

eb

where UT = Or + px OR sin 4

Up = XnR + (r - eb) + x OR cos

B =  0 - I cos - 2 sin t

e = e0 + 1 cos + 92 sin + tan 83

thus
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R

r 1

dmr 2 rn dm

(r-e) dm

Figure 62. Hinged Rotor Blade Nomenclature.

MA = pacO2R4 o(B +1 D) - XC + Clx 2 + x Ep]

+ (B +1  2 D) + B2 (A + 2 D) - C

- l1(B+ I2 ) tan 83 cos

[ 32 12

(+2 (B +4 xD) 1 (A -P. D) + 2C1xeoC

- pxXD 2(B + D) tan 83] sin (122)

1 2where A =

4
4

C 5
3 2
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D=-- c
2

1

eb

In undisturbed equilibrium flight, the moment of the inertia forces about the
flapping hinge is

R

MI - (r - eb) 2*+ r(r - eb)Q2 ]m(r) dr

eb

-102 o(1 + 3E) (123)

neglecting the weak coupling betweenl 1 and 2 for small 5.

where m(r) = blade mass distribution, assumed constant
11 = blade moment of inertia about flapping hinge

R

= (r - eb 2m(r) dr

eb

therefore

o 21 + 3E) (B + x 2 D) - AC + Ctx92 + xEl (124)

12

1 1 2 - 1 2 + 1 tan 63 (125)
B+ 2 D  B+-~ D

4x 4x
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1 2
A-4xD C

2 1 q -21 xo 3 2.
B+-1: D B+- D

4x 4x

+ Dxx 3 2 + 2 tan 83 (126)
B+ x D

A.5 VEHICLE CHARACTERISTICS

Table 30 presents numerical values for the various vehicle characteristics

required by the point-mass dynamic models. These values were derived from data

provided by Sikorsky Aircraft for the S-65-40 pure helicopter (Ref. 1) and the

S-65-200 compound helicopter (Refs. 2,3) which are described in Section 2.
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Table 30. Vehicle Characteristics for Point Mass Rotorcraft Model.

Pure Helicopter Compound HelicopterParameter Units (S-65 - 40) (S-65 - 200)

m slug 1300 1950

i deg - -8.5

rad/sec 19.3 17.7

R ft 36.0 39.5

a - 0.115 0.122

a 1/rad 5.73 5.73

- 0.058 0.063

CDo 0.012 0.012

f ft2  46 38

f ft2  400 700
Y

f ft2  400 1260
z

a 1/rod - 4.52

S ft 2  - 475

b ft - 47.5

e - 0.7

;n slug/sec - 74.4

v ft/sec - 500

63 deg 0 -30

y 12.3 p/pSL 13.8 p/pSL

where p/pSL is the atmospheric density ratio.
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APPENDIX B

GUIDANCE SYSTEM SYNTHESIS

This appendix describes the synthesis of a simple path guidance scheme

which produces velocity-correction commands to the rotorcraft flight control system.

B.1 ANALYTICAL DEVELOPMENT

The guidance concept is developed by assuming an unaccelerated nominal

flight path which maintains constant ground track (Yi), groundspeed (Vgi), and climb

angle (yi) between defined waypoints (i, i + 1), as shown in Figure 63.

NORTH

i+1

V g iV 
V D i

WAYPOINT i
(Lia ., hi)

EAST

Figure 63. Nominal Flight Path for Guidance Analysis.

The ground track angle between waypoints i and i + 1 is:

tan cos ( sn L (127)

en cos Li+. (1 + sin Li)

The climb angle is

tan yi = -VDi/Vgi (128)

The Northerly and Easterly components of groundpseed are
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VN. = V cos Y. (129)
N g I

VE. = Vg sin T. (130)

The equations of motion for this idealized situation are:

S VN
L - r (131)

VE

r cos L(132)

h = -VD (1,33)

where r = rearth + h.

To obtain a guidance law, we take first-order perturbations from the nominal flight

path defined above:

S 8 VN VN
8L = - - bh (134)

r

S 8VE V
8 r cos L (6h cos L - r sin L 8L) (135)

r cos L

= -8 V D (136)

Writing these equations in state vector form:

= Fx+Gu (137)

where

x = 68 = perturbation state vector (138)
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u =  VE  = perturbation control vector (139)-E
SV D

0 0 -VN/r 2  L

F = VE tan L/r cos L 0 -VE/r 2 cos L (140)

0 0 0

G = 1/r cos L (141)

0 0 -1

The * denotes quantities evaluated along the nominal flight path. Since the waypoints
will not be separated by large distances, the matrices F and G can be evaluated using
the average values of L and r for each:

L = (Li + Li+l) (142)
2

r = rt h + (hi + h )  (143)earth 2 i i+d

Thus we have a stationary system to control between waypoints.

The Quadratic Synthesis technique is used to obtain a steady-state guidance
law for each leg of the nominal flight plan. We define a cost function to be minimized

J = limit ft (xT Ax + uT B u) dt (144)

t - t 0 ttf to o

The matrices A and B determine the relative penalties associated with the perturbations
in the state and in the control. Usually, good values for A and B can be obtained from
the maximum permissible deviations from the nominal state and control histories; i.e.,
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6L- 2  0

-2
A = a-2 0 (145)m

0 0 8h- 2

S-2V 0 0

B = 0 bV 0 (146)Em
-2

L 0 0 V

The minimization of J leads to a linear feedback guidance law of the form

u = -Kx (147)

where the feedback gain matrix K is given by

K = B- 1 GT S (148)

and the symmetric matrix S is the steady-state solution of the Riccati equation

T -I TS = -SF - F S + SGB G S - A = 0 (149)

The steady-state value of S can be found by integrating Eq. 149 backwards in time
from S = Oat t = 0, until S 1 0.

In expanded form, the feedback guidance law is

VNC = V -K (L-L)-K (- ) K (h - h)NC N N,L Na N,h

VEC = VE - KE,L(L - L ) - KE,(- ) - KE,h(h - h ) (150)

VDC = VD - KD,L(L - L ) - KD,(- ) - KD,h(h - h )

VN, VE and VD are the constant nominal velocity components for a given leg of the

flight; L ,I and h are the nominal time histories of L, t and h between the two

waypoints.
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The guidance scheme can be simplified even further by eliminating the cross-

coupling between the vertical and horizontal motions. Both the F13 and F2 3 elements

in Eq. (140) contain 1/r2, which will be quite small. Neglecting these terms, the
solution to the Riccati equation becomes:

S3 1 = S32 = 0

S33 = 1/6h m 8VDm

B22F21 A22 + fA - Y
21 2 Y

22

B 12 G 2

s2 B2 2 A $21 11
22 - 22 22 22 B 11

where

B G2  F 2 2
Y =A 22 11 A +22 21

22  2  11 2
11  22  22

This simplifies the feedback gains as follows:

KN,h = KE,h = KD,L = KD, = 0

K D,h = 8VDm/hm

In general, the gains KN,L, KN,Y, KEL and KE,i will not be zero. However, for
flights at constant longitude (VE = 0, = F2 1 = 0):
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$21 =0

KN, = KE, L = 0

KN,L= 8VNm/Lm

KE, = 8VEm/ m

Note that the guidance system thus produces the maximum permissible velocity correc-

tions for the maximum allowable state deviations.

B.2 PROGRAM QSYN

QSYN is a digital computer program developed to implement the quadratic

synthesis technique described in the previous subsection. It numerically integrates

Eq. (149) until a steady-state solution is approximated, and then calculates the per-

turbation guidance feedback gains given by Eq.(1 48). The program is written in

Fortran IV for the CDC 6600 computer.

QSYN reads the input data shown in Table 31, calls subroutine STATE to

calculate the nominal trajectory, calls subroutine HIT to integrate the Riccati equation

backwards in time, and prints out the gains. Subroutine HIT uses the Hamming inte-

gration technique with a variable step-size for the integration of simultaneous first-

order differential equations. It calls subroutine DEV which supplies the derivatives

given by Eq. 149. HIT may also call subroutine HINTP, which interpolates for

intermediate points. FINIS is a subroutine called by HIT that will stop the integration

if the integration time exceeds the input limit ENDD, or if each element of the Riccati

matrix S changes by less than .05% during an integration step. Subroutine DEV calls

subroutines MXMULT, MXADD, and MXSUB which perform matrix multiplication,

addition and subtraction, respectively.

The printout for QSYN consists of the NAM6 namelist input; WAYPTS name-

list input; the North, East and Down velocity components - VN, VE, VD; matrices F

and G; and the gain matrix K as a function of time.
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oTable 31 . Input Data for QSYN.

Card Variable
n No. Name Units Format Example

-I Card 1 Title 8 A10 S65-40: BOS-NYC
MBoston Tango No. 1

Card 2 DLATM = Maximum Deviation of Latitude arc-min Namelist $NAM6 DLATM = 1.5, DLONM= 1.5,
DLONM = Maximum Deviation of Longitude arc-min AM6 DALTM = 250., DVNM = 20.,
DALTM = Maximum Deviation of Altitude ft DVEM = 20., DVDM = 500.,
DVNM - Maximum Deviation of Northerly Velocity kt DEL=-1.0000, BB = .000001,

z DVEM = Maximum Deviation of Easterly Velocity kt DPRIN = -100.00, LPRINT = 2,
M DVDM = Maximum Deviation of Downward Velocity ft/min INTEG = 2, ENDD = 80.00$0

A I DEL = Initial Integration Step Size sec
BB = Accuracy Indicator

DPRIN = Printout Interval sec

LPRINT = 1 for Printout Every Integration Step
112 for Normal Printout

0
z = 1 for Constant Integration Step Size

2 for Variable Integration Step Size
ENDD = Time Limit for Integration sec

C
(n

-4

0 Card 3 NWP = No. of Waypoints in Flight Path ( 20) Namelist $WAYPTS NWP = 5, FLATD = 42.0,
0 (One for $WAYPTS

Each FLATD = Latitudes of Waypoints (5 20) deg FLOND = -71.5, ALT = 2000.,
Waypoint) FLOND = Longitudes of Waypoints (520) deg VGK = 180.0$

ALT = Altitudes of Waypoints (20) ft
'4

VGK = Groundspeeds between Waypoints (519) kt

Card 4 End of File Punch 7/8/9



APPENDIX C

SIMULATION PROGRAM 'VALT'

A digital simulation program entitled VALT (VTOL Automatic Landing

Tebhnology) has been developed to analyze the rotorcraft navigation system per-

formance and to conduct subsystem sensitivity studies. The program is written in

Fortran IV for operation on the LaRC CDC 6400/6600 computer system. Figure 64

presents a general flow diagram of VALT to illustrate the overall organization and

logical operation of the simulation. The modular structure is shown by the block

diagram in Figure 65, which depicts the interrelationships of the main program and

each of the subprograms. The purpose of each of the subroutines and functions shown

in Figure 65 is summarized in Table 32. The input structure of VALT is also modularly

arranged, using NAMELISTs almost exclusively. A complete summary of the available

program inputs is shown in Table 33.

In essence, VALT is actually a double simulation. First, it integrates the

equations of motion which simulate the response of the rotorcraft and flight control

system to the guidance system commands; and it simulates the actual noisy outputs of

the various navigation sensors. This part of VALT is a nonlinear, stochastic process

which is intended to provide a reasonably accurate representation of the "real world."

The second part of VALT simulates the operations of the onboard navigation and guid-

ance systems. This portion also simulates the rotorcraft motions and navigation mea-

surements, but here models are much simpler, and are linearized about a desired

nominal flight path. The models used in this part of the program are purposely kept as

simple as possible to minimize the onboard computation requirements.

The principal outputs of the simulation are time histories of the rotorcraft

position and velocity, and two sets of error histories. The estimator errors are the
differences between the estimated and actual position/velocity, and thus indicate the
navigation systems' performance. The second set of errors show the rotorcraft's actual
deviations from the nominal position/velocity profiles; these illustrate the overall
performance of the entire system, including the navigation, guidance scheme, flight
control system, rotorcraft capability, and wind effects.
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INITIALIZE PROGRAM

S14 - OPTIONAL

READ INPUT DATA

A H NO COMPLETE
NOTHER RUN PLOTS*

8 QUIT

YES

SET UP SYSTEM CONFIGURATIONI INITIAL CONDITIONS

INTEGRATE EQUATIONS OF MOTION
PLOT

ERROR GUIDANCE CALCULATIONS
ERROR

HISTORIES*I * FLIGHT CONTROL SYSTEM
* EXTERNAL FORCES

YES END
OF FLIGHT

NO

PROPAGATE ERROR ESTIMATES
a COVARIANCE MATRIX

PERFORM AIR DATA UPDATES

REPEATED FOR ALL TIME NO
NAVIGATION SENSORS FOR MEASUREMENT

* RADAR ALTIMETER
" INS
* DME YES

" VLF PERFORM

* MLS APPOPRIATE UPDATE

4TIME NO
FOR OUTPUT

YES

PRINT OUT TIME HISTORIES

Figure 64. Overall Flow Diagram of Program VALT.
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Figure 65. Program VALT Functional Diagram.
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Table 32. 'VALT' Program Elements.

1. VALT - main program; controls overall logic.

2. SUBIN - reads and prints input data.

3. SUBOUT - prints page headings and output data; saves plot data.

4. S65 - sets pure helicopter characteristics (S-65-40).

5. S200 - sets compound helicopter characteristics (S-65-200).

6. GCDIST - calculates great circle distance and bearings between two locations.

7. RKUTTA - 4th order Runge-Kutta integration technique.

8. DIFEQ - calculates RHS of differential equations.

9. WIND - calculates steady wind components.

10. NAV - computes estimated position, velocity and measurement errors.

11. GUID - implements guidance system calculations.

12. VCFCS - implements flight control system calculations.

13. FORCES - determines external forces on rotorcraft.

14. PLOTTER - plots error histories.

15. CONFIG - sets initial conditions and noise.

16. WHITE - generates white noise sequences of given strength.

17. GAUSS - generates gaussian random numbers of given mean and a.

18. ALINE - linear interpolation from tabular data.

19. EPROP - propagates estimator error state vector and covariance matrix.

20. EDOT - calculates derivatives for EPROP.

21. AIRDAT - calculates airspeed and vertical speed measurements.

22. ALTIM - calculates altimeter measurements.

23. INS - calculates INS velocity measurements.

24. DME - calculates DME ranging measurements.

25. RDIFF - calculates range differencing measurements.
26. MLS - calculates MLS azimuth and elevation measurements.

27. UPDATE - calculates filter gains and updates the estimator state and covariance
matrix.
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Table 33. 'VALT' Inputs.

1. Title (8A10): Run Title

2. $ DATA 1 (namelist): General Control Data

NRUN - run number.

DT - integration step size, sec.

DTOUT - printout interval, sec.

DTPLOT - plot output interval, sec (no plot if DTPLOT = 0.).

NVEH - rotorcraft number (65 or 200).

ISEED - seed for random no. generator.
TENDD - time limit for simulation, min.

3. $ WINDS (namelist): Wind Data

NW - no. of points in mean wind profile (58).

HW - altitudes of mean wind profile, ft (1, 2, .. NW).

THW - directions of mean wind profile, deg (1, 2, .. NW).

VW - speeds of mean wind profile, kt (1, 2, .. NW).

THWS - standard deviation of colored wind direction error, deg.
VWS - standard deviation of colored wind speed error, kt.
ZWS - standard deviation of colored vertical wind error, ft/min.
THWT - correlation distance of colored wind direction error, nm.
VWT - correlation distance of colored wind speed error, nm.
ZWT - correlation distance of colored vertical wind error, nm.

VWG - standard deviation of random horizontal wind speed error, kt.
ZWG - standard deviation of random vertical wind speed error, ft/min.

4. $ INCOND (namelist): Initial Conditions Data

TO - initial time, min.

LATO - initial latitude, deg.

LON 0 - initial longitude, deg.

ALTO - initial altitude, ft.

VGO - initial groundspeed, kt.

TRK 0 - initial ground track, deg.

RCO - initial rate of climb, ft/min.

PSIO - initial heading, deg.
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5. $ NOM (namelist): Nominal Flight Path Data

NWPTS - number of waypoints (510),

WLAT - latitude of each waypoint, deg (1, 2, ... NWPTS).

WLON - longitude of each waypoint, deg (1, 2, ... NWPTS).

WALT - altitude of each waypoint, ft (1, 2, ... NWPTS).

VNOM - nominal groundspeed on each leg, kt (1, 2, ... NWPTS-1).

PSINOM - nominal ground track on each leg, deg (1, 2, ... NWPTS-1).

XKNLA - guidance gain KN,L on each leg, kt/min (1, 2, ... NWPTS-1).

XKNLO - guidance gain KN,.on each leg,, kt/min (1, 2, ... NWPTS-1).

XKNH - guidance gain KN,h on each leg, kt/ft (1, 2, ... NWPTS-1).

XKELA - guidance gain KE, L on each leg, kt/min (1, 2, ... NWPTS-1).

XKELO - guidance gain KE, on each leg, kt/min (1, 2, ... NWPTS-1).

XKEH - guidance gain KE,h on each leg, kt/ft (1, 2, ... NWPTS-1).

XKDLA - guidance gain KD,L on each leg, fpm/min (1, 2, NWPTS-1).

XKDLO - guidance gain KD,Lon each leg, fpm/min (1,2, NWPTS-1).
XKDH - guidance gain KD, h on each leg, fpm/ft (1, 2, NWPTS-1).

6. $ ALTDAT (namelist): Altimetry Errors

SIGALT - aof scale factor error, %.

RANALT - aof random error, ft.

DTALT - measurement interval, sec.

TALT 0 - time to begin meas., min.

7. $ INSDAT (namelist): INS Errors

QWINSN - strength of driving noise w for north axis, ft2/sec 3
QWINSE - strength of driving noise w for east axis, ft2/sec 3

QWINSN - strength of additive noise n for north axis, ft2/sec3

QNINSE - strength of additive noise n for east axis, ft2/sec3
DTINS - meas. interval, sec.

TINS 0 - begin meas. time, min.

TINSF - final meas. time, rpin.
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8. $ DMEDAT (namelist): Range Meas. Errors

DMELAT - latitude of station, deg (i = 1, 2, 3, 4).

DMELON - longitude of station, deg (i = 1, 2, 3, 4).

DMEALT - altitude of station, ft (i = 1, 2, 3, 4).

SIGDME - oof bias error, ft (i = 1, 2, 3, 4).

RANDME - aof random error, ft (i = 1, 2, 3, 4).

DTDME - meas. interval, sec (i = 1, 2, 3, 4).

TDME 0 - time to begin meas.,min (i = 1, 2, 3, 4).
TDMEF - time to end meas., min (i = 1, 2, 3, 4).

9. $ RDIFDAT (namelist): Range Difference Meas. Errors

RDLAT - latitude of station, deg (i = 1, 2, 3, 4).

RDLON - longitude of station, deg (i = 1, 2, 3, 4).

RDALT - altitude of station, ft (i = 1, 2, 3, 4).

SIGRD - aof correlated error, ft (i 1,2).

TAURD - Tof correlatederror, min (i = 1,2).

RANRD - aof random error, ft (i = 1,2).

DTRDIF - meas. interval, sec (i = 1, 2).

TRDIFF - end meas. time, min (i = 1,2).

10. $ MLSDAT (namelist): MLS Errors

MLSLAT - latitude. of transmitter, deg (i = el, az).

MLSLON - longitude of transmitter, deg (i = el, az).

MLSALT - altitude of transmitter, deg (i = el, az).

SIGMLS - a of bias error, deg (i = el, az).

RANMLS - a of random error, deg (i = el, az).

DTMLS - meas. interval, sec (i = el, az).

TMLSO - begin meas. time, min (i = el, az).

TMLSF - end meas. time, min (i = el, az).

11. $ ESTDAT (namelist): Estimator Data

YO - in itial error state estimates - Y(to)(i = 1-14).

PO - initial uncertainties in lto) - l] (i 1-14).

TAUEST - correlation times of colored noises (i = 1-7).

SIG - standard deviations of colored noises (i = 1-7).

RANALT - random altimeter error, ft.
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DLATE - latitude of DME stations, deg (i = 1-4).

DLONE - longitude of DME stations, deg (i = 1- 4).

DALTE - altitude of DME stations, ft (i = 1-4).

DRANE - random DME measurement errors, ft (i = 1-4).

RDLATE - range difference station latitudes, deg (i = 1-4).
RDLONE - range difference station longitudes, deg (i 1-4).

RDRANE - range difference random measurement errors, ft (i = 1,2).

RINSE - random INS errors, kt (i = N, E).

EMLSLA - MLS transmitter latitude, deg.

EMLSLO - MLS transmitter longitude, deg.

EMLSAL - MLS transmitter altitude, ft.

RMLSE - MLS random measurement error, deg (i = el, az).
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APPENDIX D

COVERAGE PREDICTION PROGRAM 'COVER'

D.1 DISCUSSION

A digital computer program (COVER) has been developed to predict the air-

space coverage of selected navigation, communication, or surveillance systems. The

program assists in the selection and evaluation of low altitude inter-city VTOL routes

based upon existing or future line-of-sight navaids. The coverage for a given facility

is determined by the line-of-sight (LOS) distance from the ground station to the de-

sired flight altitude (Fig. 66), modified by any specified restrictions on the signal

coverage. The desired coverage is plotted on a Lambert conformal conic projection,

which is scaled to be used as an overlay for standard sectional or world aeronautical

charts.

/ FLIGHT ALTITUDE

STATION ELEVATION

SEA LEVEL

Figure 66. Line-of-Sight Range.

If the Earth were a perfect sphere, the LOS range would be

RLOS = 1.0656 ( + ) (151)
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where RLO S 
= LOS range (nm)

hs = ground station elevation (ft)

h = aircraft flight altitude (ft)

Although it is impractical to model the terrain surrounding the ground facility, it is

unlikely there will be no obstructions above sea level. More probably, the average
terrain will be near the same elevation as the ground station, although the antenna

will undoubtedly be above ground level. For the purposes of predicted navaid cover-

age, a reasonably conservative model is obtained using the altitude difference between
the station and aircraft, i.e.,

RLOS 1.0656h a - hs  (152)

Eq. (152) is the LOS range used in Program COVER.

The principal motivation in developing COVER was to evaluate the feasi-
bility of the existing VORTAC air navigation system for low-altitude inter-city VTOL
routes. However, the program can determine the coverage of specified radar or
communication facilities (RCAG s - remote communication, air-ground) which also
utilize frequencies which travel LOS.

D.2 PROGRAM COVER USER'S SUMMARY

The purpose of this program is to plot, over a desired geographical area, the
coverage of the VORTAC s, radars or RCAG s in that area at a given flight altitude.
The program was written in Fortran IV for the CDC 6600 computer and the Calcomp 780
plotter. The program uses four tapes, other than the standard input and output units.

The input data structure for the program is shown in Table 34. "COVER" first
reads the Heading Data. The first 72 columns contain a heading which is printed on
each page of output. The Plotter Data is read next. If FACTOR = 1. and SF = 500000
(Card 4), the plot is drawn to the same scale as the Sectional Aeronautical Charts and
may be used as an overlay. A "FACTOR" smaller than 1. gives a smaller scale.
"XMAX" can be determined by predicting the length of each plot in a run; however,
,,zl, ^vc i : ,,,~ • . . ... -, ......... .f po the "... A is rea ll ,y once and must equl the total lengrn for all plots in the run.
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"YMAX" will be determined by the width of paper available to the plotter. The

width of the paper and the value of "FACTOR" limit the coverage area plotted.

The program then reads Cards 3 and 4 which specify the coverage to be

plotted for each case and writes the data on tape 7. This group of cards is followed

by an end-of-file card. .Next, COVER reads the VORTAC, radar and RCAG data

and stores them on tapes 8, 9 and 10, respectively. If all of the VORTAC, radar or

RCAG cards are removed from the deck, the end-of-file card that followed each must

be left in the deck.
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Table 34. Program COVER Input Structure.

Columns Quantity Format Typical Value

Card l Heading Data
2-72 Heading for run 72H COVERAGE

Card 2: Plotter Data
1-10 PROGID (1) = Programmer's name A10 SMITH

11-20 PROGID (2) = Job number A10 5560
21-30 PROGID (3) = Plot title A10 AIRSPACE
31-40 XMAX = Total length of plots F10.0 20.

in inches in x direction

41-50 YMAX = Width of plots in inches F10.0 30.
in y direction

51-60 FACTOR = Multiplicative factor F10.0 1.
to change size of
plotting

Card 3: Coverage .Type
1 1 If VORTAC coverage II 1VORTAC

is to be plotted for
Card 4

CHOICE = 2 If RADAR coverage 2RADAR
is to be plotted for
Card 4

3 If RCAG coverage 3RCAG
is to be plotted for
Card 4

Card 4: Map Overlay Data
1-9 LATA = Lambert conformal conic F9.4 41.3333

projection standard
parallel (degrees)

10-18 LATB = " F9.4 46.6667

19-27 LATI = Minimum latitude of coverage F9.2 42.
(degrees) '

28-36 LAT2 = Maximum latitude of coverage F9.2 43.
(degrees)

37-45 LONI = Minimum longitude of coverage F9.2 70.
(degrees)

46-54 LON2 = Maximum longitude of coverage F9.2 73.
(degrees)

- 236 -

AEROSPACE SYSTEMS, INC. * ONE VINE BROOK PARK * BURLINGTON. MASSACHUSETTS 01803 * (617) 272-7517



Columns Quantity Format Typical Value

SF = Scale factor F9.0 500000.
ALT = Altitude of aircraft for which F9.0 2000.

coverage is desired (feet)

(Cards 3 and 4 must be repeated for each
overlay desired)

Card 5:

1 End-of-file card (7/8/9)

Card 6: VORTAC Coverage Data

1-3 NAME = Name of VORTAC A3 CON
11-20 FREQ = Frequency of VORTAC (MHz) F10.2 112.9
21-30 DLA,XLA,SLA = Latitude of VORTAC 13,1x,12, 043-13-11

in degrees, minutes and seconds lx, 12
31-40 DLO,XLO,SLO = Longitude " " 071-34-33
41-50 ELV = Elevation of VORTAC (feet) F10.0 719.
51-60 VAR = Variation of magneti'c north F10.0 15.

from true north (degrees)
61 TYPE = Type of VORTAC: R1 L

D - DME only

H - High altitude VOR

L - Low altitude VOR

T - Terminal VOR

70-71 NRES = Number of restrictions for VORTAC 12 2

Card 7: VORTAC Restriction Data (One required
for each restriction of the preceding VORTAC )

1-10 These columns not read but can be used for CONI
identification

11-20 ALFA = Degrees from north to beginning F10.2 260.
of restriction

21-30 BETA = Degrees from north to end of F10.2 305.
restriction

-237-

AEROSPACE SYSTEMS, INC. * ONE VINE BROOK PARK * BURLINGTON. MASSACHUSETTS 01803 * (817) 272-7517



Columns Quantity Format Typical Value

RMX = Range beyond which restriction F10.2 12.
is effective (mi)

HMX = Altitude below which restriction F10.2 7000.
is effective (feet)

(Card 6 and its associated Card 7's must be
repeated for each VORTAC desired)

1 Card 8:. Mandatory End-of-file punch (7/8/9)

Card 9: RADAR Coverage Data

1-1 NAME = Name of RADAR A10 SARATOGANY
11-21 DLA=XLA-SLA = Latitude of RADAR 13, 1x,1 2, 043-00-37

in degrees, minutes and 1x,1 2

seconds
21-30 DLO-XLO-SLO = Longitude " " 073-40-57
31-40 ELV = Elevation of RADAR (feet) F10.2 770.
41 TYPE = Type of RADAR: R1 S

S - Short range
M - Long range

(Card 9 must be repeated for each radar desired)

1 Card 10: Mandatory End-of-file punch (7/8/9)

Card 11: RCAG Coverage Data

1-10 NAME = Name of RCAG A10 HAMPTON
11-20 DLA-XLA-SLA = Latitude of RCAG 13, lx, 12, 040-55-08

in degrees, minutes and seconds Ix, 12

21-30 DLO-XLO-SLO = Longitude " " 072-19-02
31-40 ELV = Elevation of RCAG (feet) F10.2 1000.
41 TYPE = R for RCAG R1 R

(Card 11 must be repeated for each RCAG desired)

1 Card 12: EOF on EOR card
(7/8/9 or 6/7/8/9)
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APPENDIX E

EVALUATION FLIGHT SUMMARIES

Flight Flight
Date Time Remarks

(hr) Designation

9/26/73 1.5 C Pilot Checkout.

10/9, 10, 10.4 I Introduction to low altitude RNAV; systems
11/73 checkout. Round trip: Boston/NASA LaRC.

10/23/73 2.6 1 Data recording procedures checkout. Preliminary
Zulu route evaluation VORTAC coverage checks.

11/6/73 4.4 4 Low altitude RNAV route checks. VORTAC
coverage checks. Round trip: Boston/NYC
for NYA-1.

11/6/73 2 NYA-1 VOR/ILS connectors: JFK/LGA. VOR
coverage check over Hudson River. Descending
spirals (2).

11/7/73 2.8 3 VORTAC coverage and accuracy checks.

11/8/73 2.0 2 Boston Tango Connector evaluations. Heliport
site checks. Surveillance checks. ATC and
CTOL interactions.

11/12, 3.6 5 Low altitude simulated IFR practice. Coverage
13/73 checks on two arcs of HFD VORTAC.

11/14/73 4.1 9 Hooded flight on Zulu routes. Round trip:
Boston/NYC for NYA-2.

11/14/73 N2 NYA-2 Half ILS (2). Hi-lobe approach (3). Wall
Street approaches (3). Spirals (4). VOR
coverage check over Hudson River.

11/19/73 3.6 6 LOS evaluations: climbs and descents. 6
different radials.

11/20/73 2.2 7 Boston Tango Connectors; reverse direction.
Alternate heliport site check. Surveillance
check. ATC and CTOL interactions.
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Flight Flight Remarks
Date Time Remarks

(hr) Designation

1/5, 6, 10.7 8 Summary flight, roundtrip: Boston/LaRC. Zulu
!2, 13/74 routes Boston/NYC/WDC. Coverage checks

and accuracies.

1/25/74 -'3 NYA-3 MLS Approarhes:
5 @4.5 glide slope.
3 @ 60 glide slope.

MLS coverage checks. Spiral descents and
transition to stabilized MLS approach:

3 @ 4.50 glide slope.
1 @ 60 glide slope.
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